Yau made the following conjecture:For a complete noncompact manifold with nonnegative Ricci curvature the space of harmonic functions with polynomial growth of a fixed rate is finite dimensional.we extend the result o...Yau made the following conjecture:For a complete noncompact manifold with nonnegative Ricci curvature the space of harmonic functions with polynomial growth of a fixed rate is finite dimensional.we extend the result on the Laplace operator to that on the symmetric diffusion operator,and prove the space of L-harmonic functions with polynomial growth of a fixed rate is finitedimensional,when m-dimensional Bakery-Emery Ricci curvature of the symmetric diffusion operator on the complete noncompact Riemannian manifold is nonnegative.展开更多
Let L:=-△+V be the Schrodinger operator on R^(n)with n≥3,where V is a non-negative potential satisfying△^(-1)(V)∈L^(∞)(R^(n)).Let w be an L-harmonic function,determined by V,satisfying that there exists a positiv...Let L:=-△+V be the Schrodinger operator on R^(n)with n≥3,where V is a non-negative potential satisfying△^(-1)(V)∈L^(∞)(R^(n)).Let w be an L-harmonic function,determined by V,satisfying that there exists a positive constantδsuch that,for any x∈Rn,0<δ≤w(x)≤1.Assume that p(·):R^(n)→(0,1]is a variable exponent satisfying the globally log-Hölder continuous condition.In this article,the authors show that the mappings HL^(p)(·))(R^(n))■f■wf∈H^(p)(·)(R^(n))and HL^(p(·))(R^(n))■f■(-△)^(1/2)L^(-1/2)(f)∈H^(p(·))(R^(n))are isomorphisms between the variable Hardy spaces HL^(p(·))(R^(n)),associated with L,and the variable Hardy spaces H^(p(·))(R^(n)).展开更多
基金supported by National Natural Science Foundation of China(Grant No.10571135)
文摘Yau made the following conjecture:For a complete noncompact manifold with nonnegative Ricci curvature the space of harmonic functions with polynomial growth of a fixed rate is finite dimensional.we extend the result on the Laplace operator to that on the symmetric diffusion operator,and prove the space of L-harmonic functions with polynomial growth of a fixed rate is finitedimensional,when m-dimensional Bakery-Emery Ricci curvature of the symmetric diffusion operator on the complete noncompact Riemannian manifold is nonnegative.
基金supported by the National Natural Science Foundation of China(11801555 and 11971058)the Fundamental Research Funds for the Central Universities(2020YQLX02)supported by the National Natural Science Foundation of China(11971058,11761131002 and 11671185)。
文摘Let L:=-△+V be the Schrodinger operator on R^(n)with n≥3,where V is a non-negative potential satisfying△^(-1)(V)∈L^(∞)(R^(n)).Let w be an L-harmonic function,determined by V,satisfying that there exists a positive constantδsuch that,for any x∈Rn,0<δ≤w(x)≤1.Assume that p(·):R^(n)→(0,1]is a variable exponent satisfying the globally log-Hölder continuous condition.In this article,the authors show that the mappings HL^(p)(·))(R^(n))■f■wf∈H^(p)(·)(R^(n))and HL^(p(·))(R^(n))■f■(-△)^(1/2)L^(-1/2)(f)∈H^(p(·))(R^(n))are isomorphisms between the variable Hardy spaces HL^(p(·))(R^(n)),associated with L,and the variable Hardy spaces H^(p(·))(R^(n)).