In this note, we state some refinements of conjectures of Gan-Gross-Prasad and Kudla concerning the central derivatives of L-series and special cycles on Shimura varieties. The analogues of our formulation for special...In this note, we state some refinements of conjectures of Gan-Gross-Prasad and Kudla concerning the central derivatives of L-series and special cycles on Shimura varieties. The analogues of our formulation for special values of L-series are written in terms of invariant linear forms on automorphic representations defined by integrations of matrix coefficients.展开更多
This is the note for a series of lectures that the author gave at the Centre de Recerca Matemtica (CRM), Bellaterra, Barcelona, Spain on October 19–24, 2009. The aim is to give a comprehensive description of some rec...This is the note for a series of lectures that the author gave at the Centre de Recerca Matemtica (CRM), Bellaterra, Barcelona, Spain on October 19–24, 2009. The aim is to give a comprehensive description of some recent work of the author and his students on generalisations of the Gross-Zagier formula, Euler systems on Shimura curves, and rational points on elliptic curves.展开更多
We give a proof of the irrationality of p-adic zeta-values ξp(κ) for p = 2, 3 and κ = 2,3.Such results were recently obtained by Calegari as an application of overconvergent p-adic modular forms. In this paper we...We give a proof of the irrationality of p-adic zeta-values ξp(κ) for p = 2, 3 and κ = 2,3.Such results were recently obtained by Calegari as an application of overconvergent p-adic modular forms. In this paper we present an approach using classical continued fractions discovered by Stieltjes. In addition we show the irrationality of some other p-adic L-series values, and values of the p-adic Hurwitz zeta-function.展开更多
文摘In this note, we state some refinements of conjectures of Gan-Gross-Prasad and Kudla concerning the central derivatives of L-series and special cycles on Shimura varieties. The analogues of our formulation for special values of L-series are written in terms of invariant linear forms on automorphic representations defined by integrations of matrix coefficients.
文摘This is the note for a series of lectures that the author gave at the Centre de Recerca Matemtica (CRM), Bellaterra, Barcelona, Spain on October 19–24, 2009. The aim is to give a comprehensive description of some recent work of the author and his students on generalisations of the Gross-Zagier formula, Euler systems on Shimura curves, and rational points on elliptic curves.
文摘We give a proof of the irrationality of p-adic zeta-values ξp(κ) for p = 2, 3 and κ = 2,3.Such results were recently obtained by Calegari as an application of overconvergent p-adic modular forms. In this paper we present an approach using classical continued fractions discovered by Stieltjes. In addition we show the irrationality of some other p-adic L-series values, and values of the p-adic Hurwitz zeta-function.