期刊文献+
共找到119,356篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanical properties and permeability evolution of sandstone subjected to the coupling effects of chemical-seepage-stress
1
作者 WANG Wei CHEN Chao-wei +3 位作者 CAO Ya-jun JIA Yun LIU Shi-fan SHEN Wan-qing 《Journal of Central South University》 2025年第2期552-565,共14页
In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepa... In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields. 展开更多
关键词 red sandstone chemical corrosion multi-field coupling mechanical characteristics permeability evolution
在线阅读 下载PDF
Level-Set-Based Topology Optimization of a Geometrically Nonlinear Structure Considering Thermo-mechanical Coupling Effect
2
作者 Sujun Wang An Xu Ruohong Zhao 《Acta Mechanica Solida Sinica》 2025年第1期100-114,共15页
This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element couplin... This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element coupling stress resulting from the combination of mechanical and thermal loading,using geometric nonlinear finite element analysis.A topological model is then developed to minimize compliance while meeting displacement and frequency constraints to fulfill design requirements of structural members.Since the conventional Lagrange multiplier search method is unable to handle convergence instability arising from large deformation,a novel Lagrange multiplier search method is proposed.Additionally,the proposed method can be extended to multi-constrained geometrically nonlinear topology optimization,accommodating multiple physical field couplings. 展开更多
关键词 Topology optimization Geometric nonlinearity Thermo-mechanical coupling effect Level set method Multiple constraints
原文传递
Synergistic promotion strategy of “dual-site” and “dual-path” to enhance the C–C coupling between CO_(2) and HCHO driven by photoelectrocatalysis
3
作者 Hongqiang Yang Jianfeng Zheng +6 位作者 Guoyu Wang Yifei Gao Yatao Yang Jia Li Xiaojin Han Yan Cui Zhanggen Huang 《Journal of Energy Chemistry》 2025年第1期39-49,共11页
Photoelectrocatalytic coupling CO_(2)and volatile organic compounds (VOCs) is a promising green strategy for the synergistic conversion of the two carbon-containing resources to C2products.The catalytic efficiency is ... Photoelectrocatalytic coupling CO_(2)and volatile organic compounds (VOCs) is a promising green strategy for the synergistic conversion of the two carbon-containing resources to C2products.The catalytic efficiency is always at the mercy of chemical inertness of CO_(2)and the competitive hydrogen evolution of H2O.Herein,a modified g-C_(3)N_(4)/ZnAl-LDH Z-scheme heterojunction catalyst with dual reaction site was rationally designed and precisely constructed.The Faraday efficiency of ethanol reached 68.67%with a corresponding formation rate of 227.3μmol g^(-1)h^(-1).As revealed by in-situ characterizations and density functional theory calculations,CO_(2)and HCHO were absorbed at Zn site and N site,respectively.Then,*CO generated from CO_(2)and HCHO was converted to*CH_(3)O and*CHO on the dual-active-site heterojunction.The detailed reaction mechanism experiments indicated that C–C coupling only occurred between*CO and*CH_(3)O in electrocatalysis process.Apart from the“*CO+*CH_(3)O”path,another“*CO+*CHO”coupling path was also detected in photoelectrocatalytic process.The selectivity of ethanol was significantly enhanced due to the synthesis of dual-site catalyst and the dual-path coupling path between CO_(2)and HCHO simultaneously driven by light and electricity. 展开更多
关键词 g-C_(3)N_(4)/ZnAl-LDH heterojunction Z-scheme C-C coupling ETHANOL
在线阅读 下载PDF
Cumulative thermal coupling modeling and analysisof oil-immersed motor-pump assembly forelectro–hydrostatic actuator 被引量:1
4
作者 Siming FAN Shaoping WANG +3 位作者 Qiyang WANG Xingjian WANG Di LIU Xiao WU 《Chinese Journal of Aeronautics》 2025年第5期394-410,共17页
The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the ... The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety. 展开更多
关键词 Electro-hydrostatic actuator Oil-immersed motor-pump Dynamic thermal coupling model Heat transfer Heat accumulation
原文传递
Engineered metal-atom aggregates enable selective ethylene glycol production through photocatalytic methanol C-C coupling
5
作者 Yixin Song Yongli Shen +2 位作者 Wen Zhang Lina Li Changhua An 《Nano Research》 2025年第11期210-219,共10页
Photo-reforming methanol into valuable chemicals represents an energetically sustainable alternative to conventional thermal catalysis,yet controlling-specific C-C coupling way still remains elusive.In this work,we re... Photo-reforming methanol into valuable chemicals represents an energetically sustainable alternative to conventional thermal catalysis,yet controlling-specific C-C coupling way still remains elusive.In this work,we report a sulfide-based photocatalytic paradigm,where atomic-level control of nickel species directly dictates reaction selectivity.The electrostatic constructing ZnIn_(2)S_(4)/Zn_(0.5)Cd_(0.5)S(ZIS/ZCS)heterostructures enable single atom Ni to facilitate ethylene glycol(EG)production with a rate of 11.2 mmol·gcat^(−1)·h^(−1),surpassing reported non-precious metal systems,whereas the Ni aggregates drive exclusive formaldehyde formation.The operando spectroscopy and density functional theory reveal dual roles of Ni as electron reservoir and chemical bond breakage inducers,lowering C-H activation barriers while stabilizing·CH2OH intermediates for cross-coupling.This interfacial configuration engineering creates an electron highway that couples carrier dissociation with radical recombination kinetics,achieving atom-economic steering of methanol oxidative valorization.The metal dispersion assisting catalysis correlation here provides a design blueprint for selective bond scission and reconstruction in sustainable organic synthesis. 展开更多
关键词 PHOTOCATALYSIS methanol reforming C-C coupling
原文传递
Effects of potential field delay and coupling delay on collective behavior of a fractional-order coupled system in a dichotomous fluctuating potential
6
作者 Yangfan Zhong Xi Chen +1 位作者 Maokang Luo Tao Yu 《Chinese Physics B》 2025年第5期270-287,共18页
The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivativ... The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies. 展开更多
关键词 potential field delay coupling delay FRACTIONAl-ORDER collective behavior
原文传递
Evaluation of Tubing Integrity with Rectangular Corrosion under Thermo-Chemical-Mechanical Coupling
7
作者 Yi Huang Ming Luo +4 位作者 Zhujun Li Donglei Jiang Ping Xiao Mingyuan Yao Jia He 《Fluid Dynamics & Materials Processing》 2025年第8期1839-1860,共22页
This study presents a comprehensive mechanical analysis of P110S oil tubing subjected to thermal and chemical coupling effects,with particular attention to the presence of rectangular corrosion defects.Drawing on the ... This study presents a comprehensive mechanical analysis of P110S oil tubing subjected to thermal and chemical coupling effects,with particular attention to the presence of rectangular corrosion defects.Drawing on the material’s stress–strain constitutive behavior,thermal expansion coefficient,thermal conductivity,and electrochemical test data,the research incorporates geometric nonlinearities arising from large deformations induced by corrosion.A detailed three-dimensional finite element(FE)model of the corroded P110S tubing is developed to simulate its response under complex loading conditions.The proposed model is rigorously validated through full-scale burst experiments and analytical calculations based on theoretical formulations.Building upon this validation,the Extended Finite Element Method(XFEM)and a failure criterion grounded in damage evolution mechanics are applied to investigate the mechanical behavior of the tubing under the coupled influences of temperature,stress,and chemical corrosion.Special emphasis is placed on the role of rectangular corrosion features in determining failure mechanisms.To further elucidate the impact of multiple interacting parameters,a sensitivity analysis is performed by integrating grey correlation theory with simulation outcomes.Based on these findings,the study systematically explores the elastic–plastic deformation process,crack initiation and propagation behavior,and the burst failure response of tubing specimens with varying axial lengths and depths of corrosion.The proposed methodology provides a robust predictive framework for petroleum engineers to evaluate fracture pressure,diagnose failure modes,assess operational risks,and optimize production strategies. 展开更多
关键词 Tubing corrosion XFEM multi-field coupling burst failure service life
在线阅读 下载PDF
Impact of Surface Microstructures on Diffusion-Induced Stress in Lithium-Ion Battery Electrodes:A Mechanical-Chemical Coupling Study
8
作者 Shuo Zhao Jindong Hao +4 位作者 Liuli Zhang Hai Liu Liyang Lin Cuihua An Qibo Deng 《Acta Mechanica Solida Sinica》 2025年第3期500-507,共8页
The Lithium-ion deintercalation induces a significant volume change in battery electrodes during charging and discharging processes,which in turn generates a large diffusion-induced stress(DIS).This stress can cause m... The Lithium-ion deintercalation induces a significant volume change in battery electrodes during charging and discharging processes,which in turn generates a large diffusion-induced stress(DIS).This stress can cause microstructural damage,consequently degrading battery performance.This work simplifies the particles making up the electrode into spheres and studies the impact of the surface microstructure on the distribution of diffusion-induced stress.A mechanical-chemical coupling model was established to study the DIS in secondary particles,which were constructed by adding convex particles to the ball-shaped particle surfaces of the electrode material.It is observed that an increase in the number of convex particles results in a higher concentration of lithium ions within the electrode material,along with the first principal stresses within the material particles.In addition,the convex particles increase the local stresses around the ball-shaped particle surface.Therefore,a round surface on the electrode material particles is beneficial for preventing potential fractures. 展开更多
关键词 Mechanical-chemical coupling Lithium-ion battery Diffusion-induced stress Surface microstructure
原文传递
Paired electrochemical N−N coupling:Potential-mediated selective electrosynthesis of azoxy aromatics plus 5,5′-azotetrazolate energetic materials in aqueous media
9
作者 Dengke Xiong Xiaoyang He +5 位作者 Xuan Liu Zhentao Tu Shujie Xue Jianying Wang Deli Wu Zuofeng Chen 《Journal of Energy Chemistry》 2025年第8期861-871,共11页
Azoxy aromatics are extensively utilized in materials science,pharmaceuticals,and synthetic chemistry,but their controlled and environmentally-friendly synthesis has rarely been reported.Herein,a potential-mediated el... Azoxy aromatics are extensively utilized in materials science,pharmaceuticals,and synthetic chemistry,but their controlled and environmentally-friendly synthesis has rarely been reported.Herein,a potential-mediated electrosynthesis strategy was developed by selective reduction of 4-nitrobenzyl alcohol(4-NBA)on Mn-doped Ni_(2)P nanosheets@nickel foam(Mn-Ni_(2)P/NF),enabling efficient N−N coupling to produce Azoxy with 100%selectivity at potentials of−0.6 to−0.8 V(vs.Hg/HgO).At more cathodic potentials,the product was converted to Azo and then to amino aromatics due to facilitated nitrogen hydrogenation.Additionally,the organic energetic material,5,5′-azotetrazolate,was also synthesized by anodic N−N coupling of 5-amino-1H-tetrazole on Cu(OH)_(2)nanowires@copper foam(Cu(OH)_(2)/CF).It bypassed harsh conditions(strong oxidants,high temperature,by-products separation,etc.)for the traditional synthesis of this class of materials.As a consequence,a two-electrode electrolyzer Cu(OH)_(2)/CF||Mn-Ni_(2)P/NF was assembled,allowing paired electrochemical N−N coupling into Azoxy and 5,5′-azotetrazolate.It achieves a current density of 50 mA cm^(−2)at a voltage of only 1.19 V,880 mV lower than the competitive water splitting.This electrolyzer can be efficiently driven by a 1.2 V solar panel with excellent yield and selectivity,paving the way for green synthesis of valuable chemicals through electrochemical N−N coupling strategies. 展开更多
关键词 Azoxy Azo Amino aromatics Potential-mediated electrosynthesis Metal phosphides N-N coupling
在线阅读 下载PDF
Computational Modeling of the Prefrontal-Cingulate Cortex to Investigate the Role of Coupling Relationships for Balancing Emotion and Cognition
10
作者 Jinzhao Wei Licong Li +3 位作者 Jiayi Zhang Erdong Shi Jianli Yang Xiuling Liu 《Neuroscience Bulletin》 2025年第1期33-45,共13页
Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite ... Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite this understanding,the neural circuit mechanisms underlying this phenomenon remain elusive.In this study,we present a biophysical computational model encompassing three crucial regions,including the dorsolateral prefrontal cortex,subgenual anterior cingulate cortex,and ventromedial prefrontal cortex.The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes.The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks.Furthermore,our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex,and network functionality was restored through intervention in the dorsolateral prefrontal cortex.This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression. 展开更多
关键词 Prefrontal-cingulate cortex Computational modeling coupling relationships DEPRESSION Emotion and cognition
原文传递
Spatial-Temporal Coupling and Determinants of Digital Economy and High-Quality Development: Insights from the Yellow River Region
11
作者 Zhang Shu Wang Kangqing Guo Jinlong 《全球城市研究(中英文)》 2025年第2期1-17,149,共18页
In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed p... In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed panel data from the Yellow River(YR)region from 2013 to 2021 and discovered notable spatial variances in the composite index and coupling coordination of the two systems.Specifically,the downstream region exhibited the highest coupling coordination,while the upstream region had the lowest.We identified that favorable factors such as economic development,innovation,industrial upgrading,and government intervention can bolster the coupling.Our findings provide a valuable framework for promoting DE and HQD in the YR region. 展开更多
关键词 High-quality development Digital economy Spatial-temporal coupling the Yellow River region
在线阅读 下载PDF
A spatial-resolved online MS study on OCM reaction catalyzed by Mn-Na_(2)WO_(4)/SiO_(2) system for radicals coupling mechanistic insight
12
作者 Ningxujin Ding Danyu Wang +4 位作者 Shihui Zou Jie Fan Lyubov Alexandrovna Isupova Junyu Lang Yong Yang 《Chinese Journal of Catalysis》 2025年第7期167-176,共10页
Oxidative coupling of methane(OCM)is a catalytic partial oxidation process that directly converts methane into C_(2) products.For this high temperature reaction,understanding the radical behavior through experimental ... Oxidative coupling of methane(OCM)is a catalytic partial oxidation process that directly converts methane into C_(2) products.For this high temperature reaction,understanding the radical behavior through experimental investigation is important in correlating the catalytic activity and the products.In this work,a spatial resolution online mass spectrometry(MS)system was developed and applied to a Mn-Na_(2)WO_(4)/SiO_(2) catalyzed OCM system.In addition to the residue gas analysis,the system obtained the distribution information of the reactants and products in the reactor.At various setting temperatures,all species online MS signals were collected at different positions,mapping the reaction activity covering parameters including temperature,time and space.The distribution behavior of the catalytic activity,selectivity,and apparent activation energy were kinetically analyzed.Selectivity and additional carbon balance analysis strongly supported the radical coupling model of OCM and indicated that after the catalytic bed layer,there is a significant length in the reactor(>2 mm)filled with radicals.Based on the result,a designed new method by tuning the temperature field in the reactor was found effectively to improve the catalytic activity,especially the C_(2) yield from 702 to 773℃. 展开更多
关键词 Oxidative coupling of methane Mn-Na_(2)WO_(4)/SiO_(2)catalyst Online mass spectrometry Spatial-resolved kinetic analysis Radical coupling model
在线阅读 下载PDF
Design Insights for Bilayer Electrode Batteries in In-Situ Curvature Measurement Based upon Mechanical-Electrochemical Coupling Simulation
13
作者 Guoxing Zhang Huibing Liu +2 位作者 Dawei Li Bo Lu Junqian Zhang 《Acta Mechanica Solida Sinica》 2025年第3期446-458,共13页
The largely bending bilayer electrode model battery has been widely used to measure the mechanical properties of composite electrode materials.The assumption used in the method that lithium is uniformly distributed in... The largely bending bilayer electrode model battery has been widely used to measure the mechanical properties of composite electrode materials.The assumption used in the method that lithium is uniformly distributed in the active layer lacks quantitative evaluation,and the uniformity of concentration distribution is crucial for accurate in-situ measurements of concentration-related material properties and stress in bilayer electrodes.Therefore,this paper proposes a mechanical-electrochemical coupled model to study the lithium concentration distribution in the active layer during lithiation.This model includes lithium concentration diffusion and active layer deformation.By comparing experimental and simulated curvature evolution of the active layer during lithiation and delithiation,the reliability of this simulation model is verified.We then derive the precise concentration distribution inside the active layer and suggest using relative error to quantitatively evaluate the uniformity of lithium concentration in the active layer.Results show that a low relative error in lithium concentration can be achieved in the middle region of the active layer.Additionally,the effects of different rates and geometric parameters on the lithium concentration distribution in the active layer are discussed.Results indicate that reduced rates,thinner active layers,shorter active layer lengths,and increased spacing between the working and counter electrodes can lead to a more uniform distribution of lithium concentration in the active layer.These insights help improve experimental methods and equipment,promoting uniform distribution of lithium in the active layer and enhancing measurement accuracy. 展开更多
关键词 Largely bending electrode battery Mechanical-electrochemical coupling model Lithium concentration distribution
原文传递
A Regional-Scale Method of Forecasting Debris Flow Events Based on Water-Soil Coupling Mechanism 被引量:8
14
作者 ZHANG Shao-jie WEI Fang-qiang +2 位作者 LIU Dun-long YANG Hong-juan JIANG Yu-hong 《Journal of Mountain Science》 SCIE CSCD 2014年第6期1531-1542,共12页
A debris flow forecast model based on a water-soil coupling mechanism that takes the debrisflow watershed as a basic forecast unit was established here for the prediction of disasters at the watershed scale.This was a... A debris flow forecast model based on a water-soil coupling mechanism that takes the debrisflow watershed as a basic forecast unit was established here for the prediction of disasters at the watershed scale.This was achieved through advances in our understanding of the formation mechanism of debris flow.To expand the applicable spatial scale of this forecasting model,a method of identifying potential debris flow watersheds was used to locate areas vulnerable to debris flow within a forecast region.Using these watersheds as forecasting units and a prediction method based on the water-soil coupling mechanism,a new forecasting method of debris flow at the regional scale was established.In order to test the prediction ability of this new forecasting method,the Sichuan province,China was selected as a study zone and the large-scale debris flow disasters attributable to heavy rainfall in this region on July 9,2013 were taken as the study case.According to debris flow disaster data on July 9,2013 which were provided by the geo-environmental monitoring station of Sichuan province,there were 252 watersheds in which debris flow events actually occurred.The current model predicted that 265 watersheds were likely to experience a debris flow event.Among these,43 towns including 204 debrisflow watersheds were successfully forecasted and 24 towns including 48 watersheds failed.The false prediction rate and failure prediction rate of thisforecast model were 23% and 19%,respectively.The results show that this method is more accurate and more applicable than traditional methods. 展开更多
关键词 Debris flow Forecasting Water-soil coupling mechanism WATERSHED
原文传递
Investigation of flight stability for fixed canard dual-spin projectile via CFD/RBD coupled method
15
作者 Gang Wang Tengyue Zhang +2 位作者 Tianyu Lin Haizhen Lin Ke Xi 《Defence Technology(防务技术)》 2025年第11期1-18,共18页
In this paper,a high-fidelity computational fluid dynamics(CFD)and rigid body dynamics(RBD)coupled platform for virtual flight simulation is developed to investigate the flight stability of fixed canard dual-spin proj... In this paper,a high-fidelity computational fluid dynamics(CFD)and rigid body dynamics(RBD)coupled platform for virtual flight simulation is developed to investigate the flight stability of fixed canard dual-spin projectile.The platform's reliability is validated by reproducing the characteristic resonance instability of such projectiles.By coupling the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations and the seven-degree-of-freedom RBD equations,the virtual flight simulations of fixed canard dual-spin projectiles at various curvature trajectories are achieved,and the dynamic mechanism of the trajectory following process is analyzed.The instability mechanism of the dynamic instability during trajectory following process of the fixed canard dual-spin projectile is elucidated by simulating the rolling/coning coupled forced motion,and subsequently validated through virtual flight simulations.The findings suggest that an appropriate yaw moment can drive the projectile axis to precession in the tangential direction of the trajectory,thereby enhancing the trajectory following stability.However,the damping of the projectile attains its minimum value when the forward body equilibrium rotational speed(-128 rad/s)is equal to the negative of the fast mode frequency of the projectile.Insufficient damping leads to the fixed canard dual-spin projectile exiting the dynamic stability domain during the trajectory following,resulting in weakly damped instability.Keeping the forward body not rotating or increasing the spin rates to-192 rad/s can enhance the projectile's damping,thereby improving its dynamic stability. 展开更多
关键词 Fixed canard dual-spin projectile CFD/RBD coupled method Virtualflight simulation Following stability Dynamic stability
在线阅读 下载PDF
Dynamic responses of steep bedding slope-tunnel system under coupled rainfall-seismicity:Shaking table test
16
作者 Wanpeng Shi Jianwei Zhang +3 位作者 Danqing Song Xiaoli Liu Enzhi Wang Jianmin Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2072-2090,共19页
The coupling effects of rainfall,earthquake,and complex topographic and geological conditions complicate the dynamic responses and disasters of slope-tunnel systems.For this,the large-scale shaking table tests were ca... The coupling effects of rainfall,earthquake,and complex topographic and geological conditions complicate the dynamic responses and disasters of slope-tunnel systems.For this,the large-scale shaking table tests were carried out to explore the dynamic responses of steep bedding slope-tunnel system under the coupling effect of rainfall and earthquake.Results show that the slope surface and elevation amplification effect exhibit pronounced nonlinear change caused by the tunnel and weak interlayers.When seismic wave propagates to tunnels,the weak interlayers and rock intersecting areas present complex wave field distribution characteristics.The dynamic responses of the slope are influenced by the frequency,amplitude,and direction of seismic waves.The acceleration amplification coefficient initially rises and then falls as increasing seismic frequency,peaking at 20 Hz.Additionally,the seismic damage process of slope is categorized into elastic(2-3 m/s^(2)),elastoplastic(4-5 m/s^(2))and plastic damage stages(≥6.5 m/s^(2)).In elastic stage,ΔMPGA(ratio of acceleration amplification factor)increases with increasing seismic intensity,without obvious strain distribution change.In plastic stage,ΔMPGA begins to gradually plummet,and the strain is mainly distributed in the damaged area.The modes of seismic damage in the slope-tunnel system are mainly of tensile failure of the weak interlayer,cracking failure of tunnel lining,formation of persistent cracks on the slope crest and waist,development and outward shearing of the sliding mass,and buckling failure at the slope foot under extrusion of the upper rock body.This study can serve as a reference for predicting the failure modes of tunnel-slope system in strong seismic regions. 展开更多
关键词 Rainfall and earthquake coupling Steep bedding slope-tunnel system Dynamic response characteristics Slope and tunnel interaction Damage evolution
在线阅读 下载PDF
Innovative dual-physical bioreactor for quantifying the synergistic effects of electro-stiffness coupling stimulation on cancer cells
17
作者 Qunfeng Yang Qing Zhang 《Bio-Design and Manufacturing》 2025年第3期461-481,I0040-I0055,共37页
Cells live in a multiphysics-coupled microenvironment in vivo,in which electric fields(EFs)and mechanical cues are the most essential induction signals.The regulatory effects of EFs and stiffness on cells have been in... Cells live in a multiphysics-coupled microenvironment in vivo,in which electric fields(EFs)and mechanical cues are the most essential induction signals.The regulatory effects of EFs and stiffness on cells have been independently demonstrated.However,how cells respond to electromechanical coupling cues remains mysterious.In this study,an electro-stiffness-coupled chip system was designed and fabricated,freely integrating and precisely controlling EF strength and the mechanical stiffness applied to cells across the physiological spectrum.Utilizing the innovative bioreactor,it was observed that electromechanical coupling stimulations can shape cancer cell morphology and cytoskeleton into a unique anteroposterior polarization state and orient cancer cell migration in a voltage-dependent manner through cytoskeleton-associated mechanisms.Moreover,the mechanical stiffness regulated cancer cell susceptibility to EFs,and the orientation effect of EFs on cells required a stiffness threshold.Furthermore,transforming growth factor-β1 suppressed the orientation of cancer cells induced by electromechanical coupling signals and showed a splitting effect on the directionality and velocity of cancer cell migration,indicating a comprehensive cross-talk of biochemical–electromechanical signals.Together with the dual-physical bioreactor we designed,these findings provide a robust and convenient platform for exploring cellular responses to electro-stiffness coupling signals,reveal the biophysical mechanisms of cell polarization and migration from the perspective of electromechanical coupling,and lay a promising foundation for biophysical-based cell manipulation and therapeutic interventions. 展开更多
关键词 Electromechanical coupling Cancer cell directional migration STIFFNESS CYTOSKELETON Transforming growth factor-β1(TGF-β1)
暂未订购
Teleportation of unknown states of a qubit and a single-mode field in strong coupling regime without Bell-state measurement 被引量:1
18
作者 F Jahanbakhsh M K Tavassoly 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第2期73-79,共7页
In this paper,we develop the teleportation scheme in[Zheng in Phys Rev A 69,064302,2004],in the sense that,we work in the strong atom-field coupling regime wherein the rotating wave approximation(RWA)is no longer vali... In this paper,we develop the teleportation scheme in[Zheng in Phys Rev A 69,064302,2004],in the sense that,we work in the strong atom-field coupling regime wherein the rotating wave approximation(RWA)is no longer valid.To achieve the purpose,a scheme consisting of a qubit interacting with a single-mode quantized field is described via the Rabi model(counter rotation terms are taken into account).Our first aim is to teleport an unknown atomic state of a qubit(which interacts with the quantized field in a cavity)to a second qubit(exists in another distant cavity field),beyond the RWA and without the Bell-state measurement method.In the continuation,in a similar way,we teleport an unknown state of a single-mode field too.In fact,it is shown that,in this regime,after applying some particular conditions,containing the interaction time of atom-field in the cavities,adjusting the involved frequencies,as well as the atom-field coupling in the model,if a proper measurement is performed on the state of the first qubit(the related field in the cavity),the unknown states of the qubit(field)can be teleported from the first qubit(cavity field)to the second qubit(cavity field),appropriately.We show that in both considered cases,the teleportation protocol is successfully performed with the maximum possible fidelity,1,and the acceptable success probability,0.25. 展开更多
关键词 strong atom-field coupling Rabi model quantum teleportation success probability FIDELITY
原文传递
Non-isospectral integrable couplings of Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy with self-consistent sources
19
作者 于发军 李丽 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期3965-3973,共9页
A hierarchy of non-isospectral Ablowitz-Kaup-Newell-Segur (AKNS) equations with self-consistent sources is derived. As a general reduction case, a hierarchy of non-isospectral nonlinear SchrSdinger equations (NLSE... A hierarchy of non-isospectral Ablowitz-Kaup-Newell-Segur (AKNS) equations with self-consistent sources is derived. As a general reduction case, a hierarchy of non-isospectral nonlinear SchrSdinger equations (NLSE) with selfconsistent sources is obtained. Moreover, a new non-isospectral integrable coupling of the AKNS soliton hierarchy with self-consistent sources is constructed by using the Kronecker product. 展开更多
关键词 equations hierarchy self-consistent sources integrable couplings
原文传递
A facile stereospecific synthesis of (Z)-2-sulfonyl-substituted 1,3-enynes via Sonogashira coupling of (E)-α-iodovinyl sulfones with 1-alkynes
20
作者 Wen Yan Hao Jian Wen Jiang Ming Zhong Cai 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第7期773-776,共4页
(E)-α-Iodovinyl sulfones 1 underwent the Sonogashira coupling reactions with terminal alkynes 2 in piperidine at room temperature in the presence of 5 mol% of Pd(PPh3)4 and 10 mol% of CuI to stereospecifically af... (E)-α-Iodovinyl sulfones 1 underwent the Sonogashira coupling reactions with terminal alkynes 2 in piperidine at room temperature in the presence of 5 mol% of Pd(PPh3)4 and 10 mol% of CuI to stereospecifically afford the corresponding (Z)-2-sulfonyl-substituted 1,3-enynes 3 in high yields. 展开更多
关键词 (E)-α-Iodovinyl sulfone 1 3-Enynylsulfone Sonogashira coupling Terminal alkyne
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部