The theory of L-R smash product is extended to multiplier Hopf algebras and a sufficient condition for L-R smash product to be regular multiplier Hopf algebras is given. In particular, the result of the paper implies ...The theory of L-R smash product is extended to multiplier Hopf algebras and a sufficient condition for L-R smash product to be regular multiplier Hopf algebras is given. In particular, the result of the paper implies Delvaux's main theorem in the case of smash products.展开更多
In this paper we generalize the notions of crossed products and L-R smash products in the context of multiplier Hopf algebras. We use comodule algebras to define generalized diagonal crossed products, L-R smash produc...In this paper we generalize the notions of crossed products and L-R smash products in the context of multiplier Hopf algebras. We use comodule algebras to define generalized diagonal crossed products, L-R smash products, two-sided smash products and two-sided crossed products and prove that they are all associative algebras. Then we show the isomorphic relations of them.展开更多
基金Supported by National Natural Science Foundation of China(10871170)Educational Minister Science Technology Key Foundation of China(10871170)College Special Research Doctoral Disciplines Point Fund of China(20100097110040)
基金Supported by the Educational Ministry Science Technique Research Key Foundation of China (108154)the National Natural Science Foundation of China (10871170)
文摘This paper gives a duality theorem for weak L-R smash products, which extends the duality theorem for weak smash products given by Nikshych.
基金Supported by the Ningbo Natural Science Foundation(2006A610089)
文摘The theory of L-R smash product is extended to multiplier Hopf algebras and a sufficient condition for L-R smash product to be regular multiplier Hopf algebras is given. In particular, the result of the paper implies Delvaux's main theorem in the case of smash products.
基金Foundation item: Supported by the Scientific Research Foundation for Doctoral Scientists of Henan University of Science and Technology(09001303) Supported by the National Natural Science Foundation of China(11101128)
文摘In this paper we generalize the notions of crossed products and L-R smash products in the context of multiplier Hopf algebras. We use comodule algebras to define generalized diagonal crossed products, L-R smash products, two-sided smash products and two-sided crossed products and prove that they are all associative algebras. Then we show the isomorphic relations of them.