Equivalent ways commonly used in engineering works are not effective to estimate the reliability of tandem system based on L-M method. One modified L-M method is an important means to estimate the reliability of CNC l...Equivalent ways commonly used in engineering works are not effective to estimate the reliability of tandem system based on L-M method. One modified L-M method is an important means to estimate the reliability of CNC lathes. A method of using two named confidence limits for the estimation is put forward. Fitting resuits of the sub-systems of CNC machine tools are estimated. And the scattered level of confidence limits facing the reliability matrix of sub-systems can be clearly seen.展开更多
Purpose–The efficient utilization of recycled concrete powder(RCP)has attracted much attention.To break through the limitation of single activation technology of RCP,this study investigates the effects of a mechanica...Purpose–The efficient utilization of recycled concrete powder(RCP)has attracted much attention.To break through the limitation of single activation technology of RCP,this study investigates the effects of a mechanical-microwave method on the reactivity of RCP.Design/methodology/approach–The mechanical properties,hydration products,and pore structure of RCP-incorporated mortar were evaluated.Findings–The results demonstrate that the combined activation reduces the median particle size of RCP and induces a low-frequency shift in the Si-O-T FT-IR characteristic peaks,signifying depolymerization of the silicate network and formation of highly reactive broken bond sites.Concurrently,decreased Si2p and Al2p binding energies in XPS spectra confirm enhanced surface reactivity.The 28-day strength activity index(SAI)of RCP mortar improved from 65.7(untreated)to 82.2%under optimal activation conditions(90-min ball milling followed by 10-min microwave irradiation),outperforming solely mechanical activation by 3.6–6.1%.Furthermore,combined activation increased chemically bound water content from 22.8 to 33.7%,accompanied by a low-wavenumber shift in FT-IR peaks of hydration products.The total porosity of RCP mortar decreased from 17.2 to 14.6%,indicating a denser pore structure.Originality/value–This study explores the feasibility and potential mechanism of mechanical-microwave activation of RCP,aiming to provide valuable insights for the sustainable development of materials.Using activated RCP in cement-based materials reduces the demand for cement and substantially cuts carbon emissions,thereby making a critical contribution to the construction industry’s green and low-carbon transition.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equ...A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.展开更多
The effects of different solution methods on microstructure, mechanical properties and precipitation behavior of Al-Mg-Si alloy were investigated by scanning electron microscope, transmission electron microscope, tens...The effects of different solution methods on microstructure, mechanical properties and precipitation behavior of Al-Mg-Si alloy were investigated by scanning electron microscope, transmission electron microscope, tensile test, and differential scanning calorimetry. The results revealed that the recrystallized grains of the alloy after the solution treatment with hot air became smaller and more uniform, compared with solution treatment with electrical resistance. The texture of the alloy after two solution treatment methods was different. More rotated cube components were formed through solution treatment with electrical resistance, which was better for improving the drawability of the alloy. The strength of the alloy under the solution treatment with hot air was higher before stamping, because of the small uniform grains and many clusters in the matrix. The alloy solution treated with hot air also possessed good bake hardenability, because the transformation occurred on more clusters in the matrix.展开更多
The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which ma...The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which makes the numerical solution of ACA equations costly,especially for large-size problems.To speed-up the MOC transport iterations effectively for general geometry,a coarse-mesh ACA method that involves selectively merging fine-mesh cells with identical materials,called material-mesh ACA(MMACA),is presented.The energy group batching(EGB)strategy in the tracing process is proposed to increase the parallel efficiency for microscopic crosssection problems.Microscopic and macroscopic crosssection benchmark problems are used to validate and analyse the accuracy and efficiency of the MMACA method.The maximum errors in the multiplication factor and pin power distributions are from the VERA-4 B-2 D case with silver-indium-cadmium(AIC)control rods inserted and are 104 pcm and 1.97%,respectively.Compared with the single-thread ACA solution,the maximum speed-up ratio reached 25 on 12 CPU cores for microscopic cross-section VERA-4-2 D problem.For the C5 G7-2 D and LRA-2 D benchmarks,the MMACA method can reduce the computation time by approximately one half.The present work proposes the MMACA method and demonstrates its ability to effectively accelerate MOC transport iterations.展开更多
In a bird strike, the bird undergoes large deformation like flows; while most part of the structure is in small deformation, the region near the impact point may experience large deformations, even fail. This paper de...In a bird strike, the bird undergoes large deformation like flows; while most part of the structure is in small deformation, the region near the impact point may experience large deformations, even fail. This paper develops a coupled shell-material point method (CSMPM) for bird strike simulation, in which the bird is modeled by the material point method (MPM) and the aircraft structure is modeled by the Belytschko-Lin-Tsay shell element. The interaction between the bird and the structure is handled by a particle-to-surface contact algorithm. The distorted and failed shell elements will be eroded if a certain criterion is reached. The proposed CSMPM takes full advantages of both the finite element method and the MPM for bird strike simulation and is validated by several numerical examples.展开更多
This paper presents an analytical, numerical, and experimental study on atomization characteristics and droplet distribution of a twin-fluid two-phase internal mixing atomizer to develop a Maximum Entropy Method(MEM)....This paper presents an analytical, numerical, and experimental study on atomization characteristics and droplet distribution of a twin-fluid two-phase internal mixing atomizer to develop a Maximum Entropy Method(MEM). A two-phase Eulerian-Lagrangian method is utilized for atomization modeling of the inside and outside atomizer. In order to modify energy and momentum sources in the MEM, parametric studies are performed, and experimental tests are carried out to verify the results by applying the shadowgraph method. An advanced test stand is developed to prepare a wide range of changes in atomization characteristics and mixing ratios. A high degree of consistency is found between numerical results from the developed MEM and experimental tests with different gas-phase pressures and liquid flow rates. The droplet diameter and velocity distribution are reviewed based on various Weber numbers, sources of energy, and momentum. Turbulence modeling assists to estimate the breakup length and time scale precisely in the developed MEM, and distribution ranges with mean values are achieved. With reference to a strong correlation between upstream turbulence flow and the developed MEM verified by experimental tests, an ideal droplet size and velocity distribution prediction is observed.展开更多
The element of pesedospectral-multiwavelet-Galerkin method, and how tocombine it with penalty method for treating boundary conditions are given. Multiwavelet bases don'toverlap on the given scale, and possess the ...The element of pesedospectral-multiwavelet-Galerkin method, and how tocombine it with penalty method for treating boundary conditions are given. Multiwavelet bases don'toverlap on the given scale, and possess the same compact set in a group of several functions, sothey can be directly used to the numerical discretion on the finite interval. Numerical tests showthat general boundary conditions can be enforced with the penalty method, and thatpesedospectral-multiwavelet-Galerkin method can well track the solutions' development. This alsoproves that pesedospectral-multiwavelet-Galerkin method is effective.展开更多
Commonly used statistical procedure to describe the observed statistical sets is to use their conventional moments or cumulants. When choosing an appropriate parametric distribution for the data set is typically that ...Commonly used statistical procedure to describe the observed statistical sets is to use their conventional moments or cumulants. When choosing an appropriate parametric distribution for the data set is typically that parameters of a parametric distribution are estimated using the moment method of creating a system of equations in which the sample conventional moments lay in the equality of the corresponding moments of the theoretical distribution. However, the moment method of parameter estimation is not always convenient, especially for small samples. An alternative approach is based on the use of other characteristics, which the author calls L-moments. L-moments are analogous to conventional moments, but they are based on linear combinations of order statistics, i.e., L-statistics. Using L-moments is theoretically preferable to the conventional moments and consists in the fact that L-moments characterize a wider range of distribution. When estimating from sample L-moments, L-moments are more robust to the presence of outliers in the data. Experience also shows that, compared to conventional moments, L-moments are less prone to bias of estimation. Parameter estimates obtained using L-moments are mainly in the case of small samples often even more accurate than estimates of parameters made by maximum likelihood method. Using the method of L-moments in the case of small data sets from the meteorology is primarily known in statistical literature. This paper deals with the use of L-moments in the case for large data sets of income distribution (individual data) and wage distribution (data are ordered to form of interval frequency distribution of extreme open intervals). This paper also presents a comparison of the accuracy of the method of L-moments with an accuracy of other methods of point estimation of parameters of parametric probability distribution in the case of large data sets of individual data and data ordered to form of interval frequency distribution.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
On the basis of assuming that the narrow state X(3872) is a molecule state consisting of D0 and D*0, we apply the Mandelstam generalization of the Ge11-Mann-Low method to calculate the matrix element of quark curre...On the basis of assuming that the narrow state X(3872) is a molecule state consisting of D0 and D*0, we apply the Mandelstam generalization of the Ge11-Mann-Low method to calculate the matrix element of quark current between the heavy meson states described by Bether-Salpeter wave function. In calculation of the matrix element of quark current the operator product expansion is used in order to include the nonperturbative contribution of the vacuum condensates. In this scheme we calculate the mass of X(3872). We believe that this scheme is closer to QCD than the previous work.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.40774048)
文摘Equivalent ways commonly used in engineering works are not effective to estimate the reliability of tandem system based on L-M method. One modified L-M method is an important means to estimate the reliability of CNC lathes. A method of using two named confidence limits for the estimation is put forward. Fitting resuits of the sub-systems of CNC machine tools are estimated. And the scattered level of confidence limits facing the reliability matrix of sub-systems can be clearly seen.
基金sponsored by Science and Technology Research and Development Plan of China National Railway Group Co.,Ltd.(L2022G009)National Natural Science Foundation of China(52438002)+1 种基金Research Project of China Academy of Railway Science Corporation Limited(2024YJ254)New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Purpose–The efficient utilization of recycled concrete powder(RCP)has attracted much attention.To break through the limitation of single activation technology of RCP,this study investigates the effects of a mechanical-microwave method on the reactivity of RCP.Design/methodology/approach–The mechanical properties,hydration products,and pore structure of RCP-incorporated mortar were evaluated.Findings–The results demonstrate that the combined activation reduces the median particle size of RCP and induces a low-frequency shift in the Si-O-T FT-IR characteristic peaks,signifying depolymerization of the silicate network and formation of highly reactive broken bond sites.Concurrently,decreased Si2p and Al2p binding energies in XPS spectra confirm enhanced surface reactivity.The 28-day strength activity index(SAI)of RCP mortar improved from 65.7(untreated)to 82.2%under optimal activation conditions(90-min ball milling followed by 10-min microwave irradiation),outperforming solely mechanical activation by 3.6–6.1%.Furthermore,combined activation increased chemically bound water content from 22.8 to 33.7%,accompanied by a low-wavenumber shift in FT-IR peaks of hydration products.The total porosity of RCP mortar decreased from 17.2 to 14.6%,indicating a denser pore structure.Originality/value–This study explores the feasibility and potential mechanism of mechanical-microwave activation of RCP,aiming to provide valuable insights for the sustainable development of materials.Using activated RCP in cement-based materials reduces the demand for cement and substantially cuts carbon emissions,thereby making a critical contribution to the construction industry’s green and low-carbon transition.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金Project supported by the National Natural Science Foundation of China(Nos.91752118,11672305,11232011,and 11572331)the Strategic Priority Research Program(No.XDB22040104)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.QYZDJ-SSWSYS002)
文摘A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.
基金Project(2016YFB0300605)supported by the National Key Research and Development Program of ChinaProject(51234002)supported by the National Natural Science Foundation of China+1 种基金Project(L2013113)supported by the Liaoning Province Science and Technology,ChinaProject(N140703002)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effects of different solution methods on microstructure, mechanical properties and precipitation behavior of Al-Mg-Si alloy were investigated by scanning electron microscope, transmission electron microscope, tensile test, and differential scanning calorimetry. The results revealed that the recrystallized grains of the alloy after the solution treatment with hot air became smaller and more uniform, compared with solution treatment with electrical resistance. The texture of the alloy after two solution treatment methods was different. More rotated cube components were formed through solution treatment with electrical resistance, which was better for improving the drawability of the alloy. The strength of the alloy under the solution treatment with hot air was higher before stamping, because of the small uniform grains and many clusters in the matrix. The alloy solution treated with hot air also possessed good bake hardenability, because the transformation occurred on more clusters in the matrix.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)。
文摘The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which makes the numerical solution of ACA equations costly,especially for large-size problems.To speed-up the MOC transport iterations effectively for general geometry,a coarse-mesh ACA method that involves selectively merging fine-mesh cells with identical materials,called material-mesh ACA(MMACA),is presented.The energy group batching(EGB)strategy in the tracing process is proposed to increase the parallel efficiency for microscopic crosssection problems.Microscopic and macroscopic crosssection benchmark problems are used to validate and analyse the accuracy and efficiency of the MMACA method.The maximum errors in the multiplication factor and pin power distributions are from the VERA-4 B-2 D case with silver-indium-cadmium(AIC)control rods inserted and are 104 pcm and 1.97%,respectively.Compared with the single-thread ACA solution,the maximum speed-up ratio reached 25 on 12 CPU cores for microscopic cross-section VERA-4-2 D problem.For the C5 G7-2 D and LRA-2 D benchmarks,the MMACA method can reduce the computation time by approximately one half.The present work proposes the MMACA method and demonstrates its ability to effectively accelerate MOC transport iterations.
基金Supported by the National Natural Science Foundation of China(11390363)
文摘In a bird strike, the bird undergoes large deformation like flows; while most part of the structure is in small deformation, the region near the impact point may experience large deformations, even fail. This paper develops a coupled shell-material point method (CSMPM) for bird strike simulation, in which the bird is modeled by the material point method (MPM) and the aircraft structure is modeled by the Belytschko-Lin-Tsay shell element. The interaction between the bird and the structure is handled by a particle-to-surface contact algorithm. The distorted and failed shell elements will be eroded if a certain criterion is reached. The proposed CSMPM takes full advantages of both the finite element method and the MPM for bird strike simulation and is validated by several numerical examples.
文摘This paper presents an analytical, numerical, and experimental study on atomization characteristics and droplet distribution of a twin-fluid two-phase internal mixing atomizer to develop a Maximum Entropy Method(MEM). A two-phase Eulerian-Lagrangian method is utilized for atomization modeling of the inside and outside atomizer. In order to modify energy and momentum sources in the MEM, parametric studies are performed, and experimental tests are carried out to verify the results by applying the shadowgraph method. An advanced test stand is developed to prepare a wide range of changes in atomization characteristics and mixing ratios. A high degree of consistency is found between numerical results from the developed MEM and experimental tests with different gas-phase pressures and liquid flow rates. The droplet diameter and velocity distribution are reviewed based on various Weber numbers, sources of energy, and momentum. Turbulence modeling assists to estimate the breakup length and time scale precisely in the developed MEM, and distribution ranges with mean values are achieved. With reference to a strong correlation between upstream turbulence flow and the developed MEM verified by experimental tests, an ideal droplet size and velocity distribution prediction is observed.
基金This project is supported by National Natural Science Foundation of China(No. 19971020) Multidiseipline Scientific Research Foundation of Harbin Institute of Technology, China(No.HIT.MD2001.26).
文摘The element of pesedospectral-multiwavelet-Galerkin method, and how tocombine it with penalty method for treating boundary conditions are given. Multiwavelet bases don'toverlap on the given scale, and possess the same compact set in a group of several functions, sothey can be directly used to the numerical discretion on the finite interval. Numerical tests showthat general boundary conditions can be enforced with the penalty method, and thatpesedospectral-multiwavelet-Galerkin method can well track the solutions' development. This alsoproves that pesedospectral-multiwavelet-Galerkin method is effective.
文摘Commonly used statistical procedure to describe the observed statistical sets is to use their conventional moments or cumulants. When choosing an appropriate parametric distribution for the data set is typically that parameters of a parametric distribution are estimated using the moment method of creating a system of equations in which the sample conventional moments lay in the equality of the corresponding moments of the theoretical distribution. However, the moment method of parameter estimation is not always convenient, especially for small samples. An alternative approach is based on the use of other characteristics, which the author calls L-moments. L-moments are analogous to conventional moments, but they are based on linear combinations of order statistics, i.e., L-statistics. Using L-moments is theoretically preferable to the conventional moments and consists in the fact that L-moments characterize a wider range of distribution. When estimating from sample L-moments, L-moments are more robust to the presence of outliers in the data. Experience also shows that, compared to conventional moments, L-moments are less prone to bias of estimation. Parameter estimates obtained using L-moments are mainly in the case of small samples often even more accurate than estimates of parameters made by maximum likelihood method. Using the method of L-moments in the case of small data sets from the meteorology is primarily known in statistical literature. This paper deals with the use of L-moments in the case for large data sets of income distribution (individual data) and wage distribution (data are ordered to form of interval frequency distribution of extreme open intervals). This paper also presents a comparison of the accuracy of the method of L-moments with an accuracy of other methods of point estimation of parameters of parametric probability distribution in the case of large data sets of individual data and data ordered to form of interval frequency distribution.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金Supported in part by the National Natural Science Foundation of China under Grant No. 10335012 and the National Key Basic Research Program and Cross Science of China under Grant No. 90503011
文摘On the basis of assuming that the narrow state X(3872) is a molecule state consisting of D0 and D*0, we apply the Mandelstam generalization of the Ge11-Mann-Low method to calculate the matrix element of quark current between the heavy meson states described by Bether-Salpeter wave function. In calculation of the matrix element of quark current the operator product expansion is used in order to include the nonperturbative contribution of the vacuum condensates. In this scheme we calculate the mass of X(3872). We believe that this scheme is closer to QCD than the previous work.