Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Es...Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment.展开更多
0 INTRODUTION The Kuqa Depression,situated along the northern margin of the Tarim Basin,holds substantial geological significance due to its intricate sedimentary burial history,tectonic history,and the evolution of h...0 INTRODUTION The Kuqa Depression,situated along the northern margin of the Tarim Basin,holds substantial geological significance due to its intricate sedimentary burial history,tectonic history,and the evolution of hydrocarbon source rocks(Jiang et al.,2024;Zhang et al.,2023;Huang et al.,2019;Yang et al.,2017;Jia et al.,2003;Hendrix,2000).展开更多
The Jurassic tight sandstone oil and gas exploration and development in the eastern Yangxia Sag is a new field.To elucidate the origin,accumulation process and potential of tight oil and gas,the authors have conducted...The Jurassic tight sandstone oil and gas exploration and development in the eastern Yangxia Sag is a new field.To elucidate the origin,accumulation process and potential of tight oil and gas,the authors have conducted comprehensive analyses employing methodologies encompassing source rocks,oil geochemistry,and fluid inclusions.The results show that the abundance of organic matter of Jurassic source rocks is high,and the type of organic matter is ofⅡ-Ⅲand in mature evolution stage.The main source rocks of oil and gas are Huangshanjie Formation and Jurassic coal-bearing source rocks.Ahe Formation developed two stages of hydrocarbon charging,and the period is later than the reservoir densification time.Yangxia Formation oil charged before the reservoir densified,and the late gas charged after the reservoir densified.Hydrocarbon generation intensity of Jurassic source rocks has reached the basic conditions for the formation of tight gas reservoirs.Controlled by the difference of source rocks distribution and accumulation process,tight sandstone oil and gas accumulation conditions are better in the depression direction than in the southeast margin area.This study is of practical importance for expanding the exploration field and selecting favorable areas in the eastern Yangxia sag.展开更多
Coaly source rocks have attracted considerable attention for their significant hydrocarbon generation potential in recent years. However, limited study is performed on utilizing geochemical data and well log data to e...Coaly source rocks have attracted considerable attention for their significant hydrocarbon generation potential in recent years. However, limited study is performed on utilizing geochemical data and well log data to evaluate coaly hydrocarbon source rocks. In this study, geochemical data and well log data are selected from two key wells to conduct an evaluation of coaly hydrocarbon source rocks of Jurassic Kezilenuer Formation in Kuqa Depression of Tarim Basin. Initially, analysis was focused on geochemical parameters to assess organic matter type, source rock quality, and hydrocarbon generation potential.Lithology types of source rocks include mudstone, carbonaceous mudstone and coal. The predominant organic matter type identified was Type Ⅲ and Type Ⅱ_(2), indicating a favorable hydrocarbon generation potential. Well log data are integrated to predict total organic carbon(TOC) content, and the results indicate that multiple regression method is effective in predicting TOC of carbonaceous mudstone and coal. However, the ΔlgR method exhibited limited predictive capability for mudstone source rock.Additionally, machine learning methods including multilayer perceptron neural network(MLP), random forest(RF), and extreme gradient boosting(XGBoost) techniques are employed to predict TOC of mudstone source rock. The XGBoost performs best in TOC prediction with correlation coefficient(R2) of 0.9517, indicating a close agreement between measured and predicted TOC values. This study provides a reliable prediction method of coaly hydrocarbon source rocks through machine learning methods, and will provide guidance for resource assessment.展开更多
Reservoir evaluation is important in identifying oil and gas sweet spots in sedimentary basins.This also holds true in the Tarim Basin,where the ultra-deep oil and gas-bearing formations have high present-day in situ ...Reservoir evaluation is important in identifying oil and gas sweet spots in sedimentary basins.This also holds true in the Tarim Basin,where the ultra-deep oil and gas-bearing formations have high present-day in situ stress and geothermal temperature in addition to their considerable depth as a result of multiple stages of tectonic evolution.Traditional reservoir evaluation methods are based mainly on analyses of reservoir parameters like porosity,permeability,and pore throat structure;these parameters can sometimes vary dramatically in areas with complex Structures.Geomechanics-based reservoir evaluations are favored as they adequately capture the impact of tectonic processes on reservoirs,especially those in the Tarim Basin.This study evaluates the ultra-deep clastic reservoirs in the Kuqa Depression of the Tarim Basin by integrating the geomechanical parameters including elastic modulus,natural fracture density,and present-day in situ stress into a 3D geological modeling-based reservoir evaluation.The entropy weight method is introduced to establish a comprehensive index(Q)for reservoir evaluation.The results show that the positive correlation of the daily gas production rate of representative wells in the study area with this indicator is an effective way of reservoir evaluation in ultra-deep areas with complex structures.展开更多
Thick-skinned contractional salt structures are widely developed in the western Kuqa depression, northern Tarim basin. To understand the mechanisms that govern the development of these structures, physical experiments...Thick-skinned contractional salt structures are widely developed in the western Kuqa depression, northern Tarim basin. To understand the mechanisms that govern the development of these structures, physical experiments are conducted and the results show that they are largely governed by the activities of basement faults and the forming of paleo-uplifts and basement slopes. The model materials in this study are dry sand, vaseline and plasticene (or hard foam), simulating the suprasalt, salt, and subsalt layers respectively. The experiments show that, due to the activities of basement faults and the forming of the paleo-uplifts, salt bodies usually accumulate and thicken significantly on the middle top of the paleo-uplifts which are constrained by the pre-exiting boundary faults. The development of large-scale thrust faults and salt nappes is favored by the basement slops with larger dips. The experiments also conclude that differential structural deformation could occur between the subsalt and suprasalt layers because of the presence of salt layers. Their geometries and the locations of structural highs are different, despite of the great similarities in the uplifted areas. The pierced salt diapir is not observed in the experiments, which indicates that the contractional shortening does not effectively accelerate the development of the salt diapir.展开更多
The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic ...The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic in the eastern Kuqa Depression has been in a state of semi-stagnation since the discovery of the Yinan-2 gas reservoir.According to the concept and theory of 'continuous petroleum reservoirs' and the re-analysis of the forming conditions of the Yinan-2 gas reservoir and regional natural gas in the eastern Kuqa Depression,it is believed that the deep Jurassic has good natural gas accumulation conditions as well as geological conditions for forming continuous tight gas reservoirs.The boundary of the Yinan-2 gas reservoir is not controlled by a structural spillpoint.The downdip part of the structure is dominated by gas,while the hanging wall of the fault is filled by water and forming obvious inverted gas and water.The gas reservoir has the normal temperature and ultrahigh pressure which formed in the near source or inner-source.All of these characteristics indicate that the Yinan-2 gas reservoir is different from conventional gas reservoirs.The deep Jurassic in the eastern Kuqa Depression has multisets of source-reservoir-cap assemblages,which comprise interbedded sandstones and mudstones.These assemblages are characterized by a self-generation,self-preserving and self-coverage model.Reservoir sandstones and coal measure mudstones are interbedded with each other at a large scale.As the source rocks,Triassic-Jurassic coal measure mudstones distribute continuously at a large scale and can generate and expel hydrocarbon.Source rocks contact intimately with the overlying sandstone reservoirs.During the late stage of hydrocarbon expulsion,natural gas charged continuously and directly into the neighboring reservoirs.Petroleum migrated mainly in a vertical direction over short distances.With ultra-high pressure and strong charging intensity,natural gas accumulated continuously.Reservoirs are dominated by sandstones of braided delta facies.The sand bodies distribute continuously horizontal.With low porosity and low permeability,the reservoirs are featured by strong heterogeneity.It is hypothesized that the sandstones of the interior depression tend to be relatively tight with increasing depth and structure stress weakness.Thus,it is predicted that continuous tight gas reservoirs of ultra-high pressure may exist in the deep formations of the eastern and even the whole Kuqa Depression.So,it is worth evaluating the exploration potential.展开更多
A group of alluvial fans formed in the early Paleogene represent marginal sedimentary facies at the foot of the South Tianshan Mountain, Kuqa Depression, Tarim Basin, Xinjiang province. Two types of fans occurred in t...A group of alluvial fans formed in the early Paleogene represent marginal sedimentary facies at the foot of the South Tianshan Mountain, Kuqa Depression, Tarim Basin, Xinjiang province. Two types of fans occurred in the middle-late Paleogene Kumugeliemu and Suweiyi formations: one alluvial, and the other fan delta deposited in a lacustrine setting. Within the early Neogene Jidike Formation, coastal subaqueous fans developed, probably in a deeper water lacustrine setting. The three types of fans are stacked vertically in outcrop with the sequence in ascending order: bottom alluvial, middle fan-delta, and top suhaqueous. The subaqueous is a typical coarse-fan deposit occurring in the glutinite member of the Jidike Formation in some wells. Laterally, from the foreland to the lacustrine settings, the distribution pattern of sedimentary facies represents the same three fan types sequentially. The spatial distribution of these fans was controlled by the Paleogene-Neogene Basin transformation, and evolution with different types of fans developed in the Kuqa Depression in response. In the Paleogene, the Kuqa Depression was a rift basin where an alluvial fan was deposited in the foreland setting, which, by early Neogene, became a foreland basin when the lake level changed. With any rise in lake level, fan-deltas migrated from lacustrine to foreland settings, whereas when the lake level fell, fan migration was reversed. In the early Neogene, with increasing slope and rising lake level, fans progressed and covered the previous fan-delta and lacustrine mudstone. Eventually, subaqueous fans developed, forming the present spatial configuration of these three fan types.展开更多
The Mesozoic–Cenozoic uplift history of South Tianshan has been reconstructed in many ways using thermochronological analyses for the rocks from the eastern Kuqa Depression.The main difference in the reconstructions ...The Mesozoic–Cenozoic uplift history of South Tianshan has been reconstructed in many ways using thermochronological analyses for the rocks from the eastern Kuqa Depression.The main difference in the reconstructions concerns the existence and importance of Early Cretaceous and Paleogene tectonic activities,but the existence of a Cenozoic differential uplift in the Kuqa Depression remains enigmatic.Here,we present new apatite fission-track ages obtained for 12 sandstone samples from the well-exposed Early Triassic to Quaternary sequence of the Kapushaliang section in the western Kuqa Depression.The results reveal that there were four pulses of tectonic exhumation,which occurred during the Early Cretaceous(peak ages of 112 and 105 Ma),Late Cretaceous(peak age of 67 Ma),Paleocene–Eocene(peak ages at 60,53,and 36 Ma),and early Oligocene to late Miocene(central ages spanning 30–11 Ma and peak ages of 23 and 14 Ma),respectively.A review of geochronological and geological evidence from both the western and eastern Kuqa Depression is shown as follows.(1)The major exhumation of South Tians Shan during the Early Cretaceous was possibly associated with docking of the Lhasa block with the southern margin of the Eurasian plate.(2)The Late Cretaceous uplift of the range occurred diachronically due to the far-field effects of the Kohistan-Dras Arc and Lhasa block accretion.(3)The Paleogene uplift in South Tianshan initially corresponded to the far-field effects of the India–Eurasia collision.(4)The rapid exhumation in late Cenozoic was driven by the continuous far-field effects of the collision between India and Eurasia plates.The apatite fission-track ages of 14–11 Ma suggest that late Cenozoic exhumation in the western Kuqa Depression prevailed during the middle to late Miocene,markedly later than the late Oligocene to early Miocene activity in the eastern segment.It can be hypothesized that a possible differential uplift in time occurred in the Kuqa Depression during the late Cenozoic.展开更多
A thrust-fold belt consisting of a series of thrusts and buckling folds developed in the Mesozoic and Cenozoic strata within the Kuqa Depression,Tarim Basin.In this study,a structural interpretation model of the Kuqa ...A thrust-fold belt consisting of a series of thrusts and buckling folds developed in the Mesozoic and Cenozoic strata within the Kuqa Depression,Tarim Basin.In this study,a structural interpretation model of the Kuqa Depression is established and the Mesozoic proto-basin is reconstructed on the basis of outcrop geology along the basin margin,seismic,well-log and CEMP data.The model is called‘delaminate contractional deformation',which emphasizes the decoupling between the Cenozoic,Mesozoic,pre-Mesozoic and the basin-basement within the Kuqa Depression,but there is no unified detachment.The model has a shortening amount ranging from 12 km to 16 km and the depth involved in contractional deformation ranges from 21 km to 28 km.A prototype of the Mesozoic basin reconstructed by interpretation model is a subbasin superposed on the transitional zone between the uplift at the northern edge of the Tarim Craton and the southern Tianshan orogenic wedge formed in the Hercynian orogeny.Lithospheric thermal and crustal isostatic activity after the Hercynian orogeny maybe the controlling dynamic factors of basin subsidence during the Mesozoic and early Cenozoic,the difference in rock mechanical properties between different levels,craton and orogenic wedge being the major cause of the‘delaminate contractional deformation'during the Himalayan orogeny.展开更多
The depth to detachment level is a critical factor affecting the quality of structural modeling in fold and thrust belts. There are several detachment levels developed in the Kuqa depression. Based on the excess-area ...The depth to detachment level is a critical factor affecting the quality of structural modeling in fold and thrust belts. There are several detachment levels developed in the Kuqa depression. Based on the excess-area diagram, this paper concerns mainly the calculation of the depth to detachment in the Kuqa depression. The result demonstrates that the detachment levels are situated in different strata in varying zones, such as the Paleogene Kugeliemu Formation, the Paleozoic and the crystalline basement. The calculated depth to detachment level is very helpful for testing whether a structural interpretation is reasonable and for defining the depth of deeper detachment levels which were not discerned in seismic profiles.展开更多
Based on the pyrolysis products for the Jurassic low-mature coal under programmed temperature,and chemical and carbon isotopic compositions of natural gas from the Kuqa Depression, the genetic origin of natural gas wa...Based on the pyrolysis products for the Jurassic low-mature coal under programmed temperature,and chemical and carbon isotopic compositions of natural gas from the Kuqa Depression, the genetic origin of natural gas was determined,and then a gas filling model was established,in combination with the geological background of the Kuqa Depression.The active energy of CH_4,C_2H_6 and C_3H_8 was gotten after the data of pyrolysis gas products under different heating rates(2℃/h and 20℃/h)were fitted by the Gas Oil Ratio(GOR)Isotope Model soft.When the frequency factor(Af)was chosen as 1×10^(14),the active energy of CH_4,C_2H_6 and C_3H_8 was 58 kcal/mol,57 kcal/mol and 54 kcal/ mol,respectively.The distributive ranges of theδ^(13)C_1,δ^(13)C_2 andδ^(13)C_3 values for the pyrolysis gas products are-35.9‰to-30.7‰,-26.2‰to-21.3‰and-26.4‰to-22.7‰,respectively.All of the natural gases from the Kuqa Depression are dominated by hydrocarbon gases,with the high gas dryness(C_1/C_(1-4))at the middle and northern parts of the depression and the low values at both east and west sides and the southern part.The carbon isotopes of methane and its homologs as a typical coal-type gas are enriched in ^(13)C,and the distributive range of theδ^(13)C_1,δ^(13)C_2 andδ^(13)C_3 value is-32‰to -38‰,-22‰to-24‰and-20‰to-22‰,respectively,with the carbon isotopes of gaseous alkanes being less negative with the carbon number.With the ethane being enriched in ^(13)C the increasing tendency of the geological reserve of natural gas in the Kuqa Depression is observed.This observed change is consistent with the results of pyrolysate gas yield of coal as a potential gas source in the Kuqa Depression,suggesting natural gas was thermally derived from the humic organic matters and the carbon isotopes of gaseous alkanes would coarsely predict the geological reserve of gas in the Kuqa Depression.Through the simulation of kinetic processes of gas generation for the Jurassic coal in the Kuqa Depression,the gas in the Kela 2 gas field would get the threshold of gas expulsion after 27 Ma,be expelled out of source rocks as"pulse action",and then filled in the gas reservoir.The peak gas-filling history took place during the past 2 Ma.展开更多
The deep Lower Jurassic Ahe Formation(J_(1a))in the Dibei–Tuzi area of the Kuqa Depression has not been extensively explored because of the complex distribution of fractures.A study was conducted to investigate the r...The deep Lower Jurassic Ahe Formation(J_(1a))in the Dibei–Tuzi area of the Kuqa Depression has not been extensively explored because of the complex distribution of fractures.A study was conducted to investigate the relationship between the natural fracture distribution and structural style.The J_(1a)fractures in this area were mainly high-angle shear fractures.A backward thrust structure(BTS)is favorable for gas migration and accumulation,probably because natural fractures are more developed in the middle and upper parts of a thick competent layer.The opposing thrust structure(OTS)was strongly compressed,and the natural fractures in the middle and lower parts of the thick competent layer around the fault were more intense.The vertical fracture distribution in the thick competent layers of an imbricate-thrust structure(ITS)differs from that of BTS and OTS.The intensity of the fractures in the ITS anticline is similar to that in the BTS.Fracture density in monoclinic strata in a ITS is controlled by faulting.Overall,the structural style controls the configuration of faults and anticlines,and the stress on the competent layers,which significantly affects deep gas reservoir fractures.The enrichment of deep tight sandstone gas is likely controlled by two closely spaced faults and a fault-related anticline.展开更多
The world petroleum exploration suggests that,about70%of the world’s potash resources were discovered during oil and gas exploration(Zheng et al.,2007).The Kuqa depression in the Tarim basin is abundant with petroleu...The world petroleum exploration suggests that,about70%of the world’s potash resources were discovered during oil and gas exploration(Zheng et al.,2007).The Kuqa depression in the Tarim basin is abundant with petroleum exploration data,and展开更多
In a thermal simulation experiment of gold tubes of closed-system, calculating with the KINETICS and GOR-ISOTOPE KINETICS software, kinetic parameters of gas generation and methane carbon isotopic fractionation from T...In a thermal simulation experiment of gold tubes of closed-system, calculating with the KINETICS and GOR-ISOTOPE KINETICS software, kinetic parameters of gas generation and methane carbon isotopic fractionation from Triassic-Jurassic hydrocarbon source rocks in the Kuqa depression of Tarim Basin are obtained. The activation energies of methane generated from Jurassic coal, Jurassic mudstone and Triassic mudstone in the Kuqa Depression are 197-268 kJ/mol, 180-260 kJ/mol and 214-289 kJ/mol, respectively, and their frequency factors are 5.265×10^13 s^-1, 9.761×10^11 s^-1 and 2.270×10^14 s^-1. This reflects their differences of hydrocarbon generation behaviors. The kinetic parameters of methane carbon isotopic fractionation are also different in Jurassic coal, Jurassic mudstone and Triassic mudstone, whose average activation energies are 228 kJ/mol, 205 kJ/mol and 231 kJ/mol, respectively. Combined with the geological background, the origin of natural gas in the Yinan-2 gas pool is discussed, and an accumulation model of natural gas is thus established. The Yinan- 2 gas is primarily derived from Jurassic coal-bearing source rocks in the Yangxia Sag. Main gas accumulation time is 5-0 Ma and the corresponding Ro is in the range from 1.25 %-1.95 %. The loss rate of natural gas is 25 %-30 %.展开更多
The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Ce...The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Cenozoic Indian-Asian collision.However,there are limited reports on the tectonic deformation and initiation of Triassic intracontinental deformation in the Tianshan range.Understanding this structural context is crucial for interpreting the early intracontinental deformation history of the Eurasian continent during the early Mesozoic.Growth strata and syn-tectonic sediments provide a rich source of information on tectonic activities and have been extensively used in the studies of orogenic belts.Based on detail fieldwork conducted in this study,the middle-late Triassic Kelamayi Formation of the northern Kuqa Depression in the southern Tianshan fold-thrust belt has been identified as the typical syn-tectonic growth strata.The youngest detrital zircon component in two lithic sandstone samples from the bottom and top of the Kelamayi growth strata yielded U-Pb ages of 223.4±3.1 and 215.5±2.9 Ma,respectively,indicating that the maximum depositional age of the bottom and top of the Kelamayi growth strata is 226-220 and 218-212 Ma.The geochronological distribution of detrital samples from the Early-Middle Triassic and Late Triassic revealed abrupt changes,suggesting a new source supply resulting from tectonic activation in the Tianshan range.The coupling relationship between the syn-tectonic sedimentation of the Kelamayi Formation and the South Tianshan fold-thrust system provides robust evidence that the Triassic intracontinental deformation of the South Tianshan range began at approximately 226-220 Ma(during the Late Triassic)and ended at approximately 218-212 Ma.These findings provide crucial constraints for understanding the intraplate deformation in the Tianshan range during the Triassic.展开更多
We analyze the excess area and depth to detachment method developed by Epard and Groshong (1993), and apply it to the sand box model of Ge et al (2004) to illustrate that inadequate consideration will affect the c...We analyze the excess area and depth to detachment method developed by Epard and Groshong (1993), and apply it to the sand box model of Ge et al (2004) to illustrate that inadequate consideration will affect the calculation of true depth to detachment. Using the data of Yu et al (2006) to fit linear regression lines, we obtain the depths to detachment of Kela-2, Misikantage anticline and Dongqiu-8 structures, 115.74km, 14.17km, and 75.48km below the reference level (Cretaceous bottom) respectively with the excess area intercept equal to zero. However, the calculation results of depth to detachment in Yu et al (2006) are based on excess area intercept unequal to zero.展开更多
The origin and distribution of formation overpressure have effect not only on hydrocarbon migration and accumulation, but also on technique of drilling well. The study and prediction of overpressure are very important...The origin and distribution of formation overpressure have effect not only on hydrocarbon migration and accumulation, but also on technique of drilling well. The study and prediction of overpressure are very important in basin analysis. At present, overpressure is mostly predicted by stack velocity. The process in calculating inter-velocity from stack velocity is very complex and inevitably leads to errors. Especially, this method is not available in the case that structural compression contribution to overpressure occurred. This paper introduces a new method, impedance inversion, to predict overpressure, and the principle is discussed. This method is used to predict the overpressure in Kuqa depression, Tarim basin and as a result, the absolute errors are less than 0.1, and relative errors are less than 5 % for predicted fluid pressure coefficients to the drill stem test (DST) measurements. It suggests that this method can be widely used to predict overpressure in foreland basins.展开更多
Paleo-oil reservoir is of great importance to understand hydrocarbon enrichment mechanism and hydrocarbon exploration potential,but is yet poorly investigated in Kuqa Depression.The occurrence of the paleo-oil reservo...Paleo-oil reservoir is of great importance to understand hydrocarbon enrichment mechanism and hydrocarbon exploration potential,but is yet poorly investigated in Kuqa Depression.The occurrence of the paleo-oil reservoir in Dabei area was proved by quantitative grain fluorescence(QGF)and fluid inclusion petrography.Development history of the paleo-oil reservoir was reconstructed through:(1)oil-source correlation;(2)time coupling of source rock maturation,porosity evolution and migration pathways.The impact of paleo-oil reservoir on tight-gas accumulation was consequently discussed.Results suggest that considerable oil was accumulated in the K_(1)bs reservoir with paleo oil-water contact in Dabei 2 Well and Dabei 201 Well at 5800 and 6040 m,respectively.Crude oil was primarily sourced from Triassic source rocks with Jurassic source rocks of secondary importance,which was at oil generation window(0.7%–1.1%Ro)during 9–6 and 7.5–5 Ma,respectively.The occurrence of K_(1)bs tight reservoir(porosity<12%)was about 25 Ma,while faults and associated fractures at Kelasue structural belt were developed approximately from 8 to 3.5 Ma.Therefore,the tight oil accumulation was formed during 8–5 Ma.The paleo-oil reservoir in Dabei 1 gas field was destroyed by the evaporation fractionation in later stage.展开更多
Objective The Tarim Basin is China's largest ore-bearing interior basin, and contains mainly marine oils. The Kuqa depression, a secondary structural unit within the northem Tarim Basin, is composed of Mesozoic and ...Objective The Tarim Basin is China's largest ore-bearing interior basin, and contains mainly marine oils. The Kuqa depression, a secondary structural unit within the northem Tarim Basin, is composed of Mesozoic and Cenozoic clastic sedimentary rocks dominated by continental oil. Previous research suggests that the crude oils especially condensates in the Kuqa depression are rich in abnormally high abundant rearranged hopanes. On the basis of 41 condensate samples and five oil samples from the Kuqa depression, this work systematically discussed the relationship between biomarker parameters and rearranged hopanes and deeply investigated the influence of depositional environment, original source,展开更多
基金Supported by the National Natural Science Foundation of China(U22B6002)PetroChina Science and Technology Project(2023ZZ14).
文摘Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment.
基金supported by the National Key Research and Development Project(No.2019YFA0708601)the National Natural Science Foundation of China(No.4231101056)the Chinese Academy of Geological Sciences Basic Research Fund(No.JKYZD202402)。
文摘0 INTRODUTION The Kuqa Depression,situated along the northern margin of the Tarim Basin,holds substantial geological significance due to its intricate sedimentary burial history,tectonic history,and the evolution of hydrocarbon source rocks(Jiang et al.,2024;Zhang et al.,2023;Huang et al.,2019;Yang et al.,2017;Jia et al.,2003;Hendrix,2000).
基金supported by Joint Fund Project of National Natural Science Foundation(No.U22B6002)CNPC Scientific Research and Technology Development Project(No.2023ZZ14YJ02).
文摘The Jurassic tight sandstone oil and gas exploration and development in the eastern Yangxia Sag is a new field.To elucidate the origin,accumulation process and potential of tight oil and gas,the authors have conducted comprehensive analyses employing methodologies encompassing source rocks,oil geochemistry,and fluid inclusions.The results show that the abundance of organic matter of Jurassic source rocks is high,and the type of organic matter is ofⅡ-Ⅲand in mature evolution stage.The main source rocks of oil and gas are Huangshanjie Formation and Jurassic coal-bearing source rocks.Ahe Formation developed two stages of hydrocarbon charging,and the period is later than the reservoir densification time.Yangxia Formation oil charged before the reservoir densified,and the late gas charged after the reservoir densified.Hydrocarbon generation intensity of Jurassic source rocks has reached the basic conditions for the formation of tight gas reservoirs.Controlled by the difference of source rocks distribution and accumulation process,tight sandstone oil and gas accumulation conditions are better in the depression direction than in the southeast margin area.This study is of practical importance for expanding the exploration field and selecting favorable areas in the eastern Yangxia sag.
基金supported by Science Foundation of China University of Petroleum(Beijing)(No.2462023QNXZ010).
文摘Coaly source rocks have attracted considerable attention for their significant hydrocarbon generation potential in recent years. However, limited study is performed on utilizing geochemical data and well log data to evaluate coaly hydrocarbon source rocks. In this study, geochemical data and well log data are selected from two key wells to conduct an evaluation of coaly hydrocarbon source rocks of Jurassic Kezilenuer Formation in Kuqa Depression of Tarim Basin. Initially, analysis was focused on geochemical parameters to assess organic matter type, source rock quality, and hydrocarbon generation potential.Lithology types of source rocks include mudstone, carbonaceous mudstone and coal. The predominant organic matter type identified was Type Ⅲ and Type Ⅱ_(2), indicating a favorable hydrocarbon generation potential. Well log data are integrated to predict total organic carbon(TOC) content, and the results indicate that multiple regression method is effective in predicting TOC of carbonaceous mudstone and coal. However, the ΔlgR method exhibited limited predictive capability for mudstone source rock.Additionally, machine learning methods including multilayer perceptron neural network(MLP), random forest(RF), and extreme gradient boosting(XGBoost) techniques are employed to predict TOC of mudstone source rock. The XGBoost performs best in TOC prediction with correlation coefficient(R2) of 0.9517, indicating a close agreement between measured and predicted TOC values. This study provides a reliable prediction method of coaly hydrocarbon source rocks through machine learning methods, and will provide guidance for resource assessment.
基金founded by China National Petroleum Corporation Major Science and Technology Project“Research and Application of Key Technologies for the Development of Ultra-Deep Oil and Gas Reservoirs”(2023ZZ14-03).
文摘Reservoir evaluation is important in identifying oil and gas sweet spots in sedimentary basins.This also holds true in the Tarim Basin,where the ultra-deep oil and gas-bearing formations have high present-day in situ stress and geothermal temperature in addition to their considerable depth as a result of multiple stages of tectonic evolution.Traditional reservoir evaluation methods are based mainly on analyses of reservoir parameters like porosity,permeability,and pore throat structure;these parameters can sometimes vary dramatically in areas with complex Structures.Geomechanics-based reservoir evaluations are favored as they adequately capture the impact of tectonic processes on reservoirs,especially those in the Tarim Basin.This study evaluates the ultra-deep clastic reservoirs in the Kuqa Depression of the Tarim Basin by integrating the geomechanical parameters including elastic modulus,natural fracture density,and present-day in situ stress into a 3D geological modeling-based reservoir evaluation.The entropy weight method is introduced to establish a comprehensive index(Q)for reservoir evaluation.The results show that the positive correlation of the daily gas production rate of representative wells in the study area with this indicator is an effective way of reservoir evaluation in ultra-deep areas with complex structures.
文摘Thick-skinned contractional salt structures are widely developed in the western Kuqa depression, northern Tarim basin. To understand the mechanisms that govern the development of these structures, physical experiments are conducted and the results show that they are largely governed by the activities of basement faults and the forming of paleo-uplifts and basement slopes. The model materials in this study are dry sand, vaseline and plasticene (or hard foam), simulating the suprasalt, salt, and subsalt layers respectively. The experiments show that, due to the activities of basement faults and the forming of the paleo-uplifts, salt bodies usually accumulate and thicken significantly on the middle top of the paleo-uplifts which are constrained by the pre-exiting boundary faults. The development of large-scale thrust faults and salt nappes is favored by the basement slops with larger dips. The experiments also conclude that differential structural deformation could occur between the subsalt and suprasalt layers because of the presence of salt layers. Their geometries and the locations of structural highs are different, despite of the great similarities in the uplifted areas. The pierced salt diapir is not observed in the experiments, which indicates that the contractional shortening does not effectively accelerate the development of the salt diapir.
基金funded by the National Science and technology Major Project(2008ZX05001)
文摘The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic in the eastern Kuqa Depression has been in a state of semi-stagnation since the discovery of the Yinan-2 gas reservoir.According to the concept and theory of 'continuous petroleum reservoirs' and the re-analysis of the forming conditions of the Yinan-2 gas reservoir and regional natural gas in the eastern Kuqa Depression,it is believed that the deep Jurassic has good natural gas accumulation conditions as well as geological conditions for forming continuous tight gas reservoirs.The boundary of the Yinan-2 gas reservoir is not controlled by a structural spillpoint.The downdip part of the structure is dominated by gas,while the hanging wall of the fault is filled by water and forming obvious inverted gas and water.The gas reservoir has the normal temperature and ultrahigh pressure which formed in the near source or inner-source.All of these characteristics indicate that the Yinan-2 gas reservoir is different from conventional gas reservoirs.The deep Jurassic in the eastern Kuqa Depression has multisets of source-reservoir-cap assemblages,which comprise interbedded sandstones and mudstones.These assemblages are characterized by a self-generation,self-preserving and self-coverage model.Reservoir sandstones and coal measure mudstones are interbedded with each other at a large scale.As the source rocks,Triassic-Jurassic coal measure mudstones distribute continuously at a large scale and can generate and expel hydrocarbon.Source rocks contact intimately with the overlying sandstone reservoirs.During the late stage of hydrocarbon expulsion,natural gas charged continuously and directly into the neighboring reservoirs.Petroleum migrated mainly in a vertical direction over short distances.With ultra-high pressure and strong charging intensity,natural gas accumulated continuously.Reservoirs are dominated by sandstones of braided delta facies.The sand bodies distribute continuously horizontal.With low porosity and low permeability,the reservoirs are featured by strong heterogeneity.It is hypothesized that the sandstones of the interior depression tend to be relatively tight with increasing depth and structure stress weakness.Thus,it is predicted that continuous tight gas reservoirs of ultra-high pressure may exist in the deep formations of the eastern and even the whole Kuqa Depression.So,it is worth evaluating the exploration potential.
基金supported by the National scientific special:Tectonic and sedimentary and reservoir features of foreland basin in west-central China(2008zx05000-003-01).
文摘A group of alluvial fans formed in the early Paleogene represent marginal sedimentary facies at the foot of the South Tianshan Mountain, Kuqa Depression, Tarim Basin, Xinjiang province. Two types of fans occurred in the middle-late Paleogene Kumugeliemu and Suweiyi formations: one alluvial, and the other fan delta deposited in a lacustrine setting. Within the early Neogene Jidike Formation, coastal subaqueous fans developed, probably in a deeper water lacustrine setting. The three types of fans are stacked vertically in outcrop with the sequence in ascending order: bottom alluvial, middle fan-delta, and top suhaqueous. The subaqueous is a typical coarse-fan deposit occurring in the glutinite member of the Jidike Formation in some wells. Laterally, from the foreland to the lacustrine settings, the distribution pattern of sedimentary facies represents the same three fan types sequentially. The spatial distribution of these fans was controlled by the Paleogene-Neogene Basin transformation, and evolution with different types of fans developed in the Kuqa Depression in response. In the Paleogene, the Kuqa Depression was a rift basin where an alluvial fan was deposited in the foreland setting, which, by early Neogene, became a foreland basin when the lake level changed. With any rise in lake level, fan-deltas migrated from lacustrine to foreland settings, whereas when the lake level fell, fan migration was reversed. In the early Neogene, with increasing slope and rising lake level, fans progressed and covered the previous fan-delta and lacustrine mudstone. Eventually, subaqueous fans developed, forming the present spatial configuration of these three fan types.
基金supported by the National Natural Science Foundation of China(No.41602233)by the Science Foundation for top-notch innovative talents of China University of Petroleum,Beijing(No.2462017BJB07)+4 种基金by the Science Foundation of China University of Petroleum,Beijing(No.2462014YJRC023)by the Foundation of State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/indep-41406)by the State Science and Technology Major Project(2016ZX05008001)from the Ministry of Science and Technology of Chinaby the National 973 Technology Project“Dessert origin and fine labeling of continental tight oil”(2015CB250901)by the Cai Yuanpei program from the French Ministry of Foreign Affairs and Ministry of Higher Education and Research and the Ministry of Education of the People's Republic of China(DOSSIER N°30137)
文摘The Mesozoic–Cenozoic uplift history of South Tianshan has been reconstructed in many ways using thermochronological analyses for the rocks from the eastern Kuqa Depression.The main difference in the reconstructions concerns the existence and importance of Early Cretaceous and Paleogene tectonic activities,but the existence of a Cenozoic differential uplift in the Kuqa Depression remains enigmatic.Here,we present new apatite fission-track ages obtained for 12 sandstone samples from the well-exposed Early Triassic to Quaternary sequence of the Kapushaliang section in the western Kuqa Depression.The results reveal that there were four pulses of tectonic exhumation,which occurred during the Early Cretaceous(peak ages of 112 and 105 Ma),Late Cretaceous(peak age of 67 Ma),Paleocene–Eocene(peak ages at 60,53,and 36 Ma),and early Oligocene to late Miocene(central ages spanning 30–11 Ma and peak ages of 23 and 14 Ma),respectively.A review of geochronological and geological evidence from both the western and eastern Kuqa Depression is shown as follows.(1)The major exhumation of South Tians Shan during the Early Cretaceous was possibly associated with docking of the Lhasa block with the southern margin of the Eurasian plate.(2)The Late Cretaceous uplift of the range occurred diachronically due to the far-field effects of the Kohistan-Dras Arc and Lhasa block accretion.(3)The Paleogene uplift in South Tianshan initially corresponded to the far-field effects of the India–Eurasia collision.(4)The rapid exhumation in late Cenozoic was driven by the continuous far-field effects of the collision between India and Eurasia plates.The apatite fission-track ages of 14–11 Ma suggest that late Cenozoic exhumation in the western Kuqa Depression prevailed during the middle to late Miocene,markedly later than the late Oligocene to early Miocene activity in the eastern segment.It can be hypothesized that a possible differential uplift in time occurred in the Kuqa Depression during the late Cenozoic.
基金supported by the National Science and Technology Major Special Project(Grant No.2011ZX05003-004)the National Key Basic Research Development Plan(Grant No.2011CB201100)。
文摘A thrust-fold belt consisting of a series of thrusts and buckling folds developed in the Mesozoic and Cenozoic strata within the Kuqa Depression,Tarim Basin.In this study,a structural interpretation model of the Kuqa Depression is established and the Mesozoic proto-basin is reconstructed on the basis of outcrop geology along the basin margin,seismic,well-log and CEMP data.The model is called‘delaminate contractional deformation',which emphasizes the decoupling between the Cenozoic,Mesozoic,pre-Mesozoic and the basin-basement within the Kuqa Depression,but there is no unified detachment.The model has a shortening amount ranging from 12 km to 16 km and the depth involved in contractional deformation ranges from 21 km to 28 km.A prototype of the Mesozoic basin reconstructed by interpretation model is a subbasin superposed on the transitional zone between the uplift at the northern edge of the Tarim Craton and the southern Tianshan orogenic wedge formed in the Hercynian orogeny.Lithospheric thermal and crustal isostatic activity after the Hercynian orogeny maybe the controlling dynamic factors of basin subsidence during the Mesozoic and early Cenozoic,the difference in rock mechanical properties between different levels,craton and orogenic wedge being the major cause of the‘delaminate contractional deformation'during the Himalayan orogeny.
基金the National Natural Science Foundation of China(No.40472107,40172076)the Foundation of Key Laboratory of Education Ministry for Hydrocarbon Accumulation Mechanism(China University of Petroleum)(Grant No.2003-02)+1 种基金the National Major Fundamental Research and Development Project(2005CB422107,G1999043305)the Tarim 0ilfield Company Project(Grant No.41004050009).
文摘The depth to detachment level is a critical factor affecting the quality of structural modeling in fold and thrust belts. There are several detachment levels developed in the Kuqa depression. Based on the excess-area diagram, this paper concerns mainly the calculation of the depth to detachment in the Kuqa depression. The result demonstrates that the detachment levels are situated in different strata in varying zones, such as the Paleogene Kugeliemu Formation, the Paleozoic and the crystalline basement. The calculated depth to detachment level is very helpful for testing whether a structural interpretation is reasonable and for defining the depth of deeper detachment levels which were not discerned in seismic profiles.
基金financially supported by the Chinese National Natural Science Foundation(Grant No:40802028)the National Key Foundational Research and Development Project (Grant No:2005CB422108)+1 种基金the National Science and Technology Special Project(2008ZX05005-004-004)supported by the Opening Project of Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism,Ministry of Education,China.
文摘Based on the pyrolysis products for the Jurassic low-mature coal under programmed temperature,and chemical and carbon isotopic compositions of natural gas from the Kuqa Depression, the genetic origin of natural gas was determined,and then a gas filling model was established,in combination with the geological background of the Kuqa Depression.The active energy of CH_4,C_2H_6 and C_3H_8 was gotten after the data of pyrolysis gas products under different heating rates(2℃/h and 20℃/h)were fitted by the Gas Oil Ratio(GOR)Isotope Model soft.When the frequency factor(Af)was chosen as 1×10^(14),the active energy of CH_4,C_2H_6 and C_3H_8 was 58 kcal/mol,57 kcal/mol and 54 kcal/ mol,respectively.The distributive ranges of theδ^(13)C_1,δ^(13)C_2 andδ^(13)C_3 values for the pyrolysis gas products are-35.9‰to-30.7‰,-26.2‰to-21.3‰and-26.4‰to-22.7‰,respectively.All of the natural gases from the Kuqa Depression are dominated by hydrocarbon gases,with the high gas dryness(C_1/C_(1-4))at the middle and northern parts of the depression and the low values at both east and west sides and the southern part.The carbon isotopes of methane and its homologs as a typical coal-type gas are enriched in ^(13)C,and the distributive range of theδ^(13)C_1,δ^(13)C_2 andδ^(13)C_3 value is-32‰to -38‰,-22‰to-24‰and-20‰to-22‰,respectively,with the carbon isotopes of gaseous alkanes being less negative with the carbon number.With the ethane being enriched in ^(13)C the increasing tendency of the geological reserve of natural gas in the Kuqa Depression is observed.This observed change is consistent with the results of pyrolysate gas yield of coal as a potential gas source in the Kuqa Depression,suggesting natural gas was thermally derived from the humic organic matters and the carbon isotopes of gaseous alkanes would coarsely predict the geological reserve of gas in the Kuqa Depression.Through the simulation of kinetic processes of gas generation for the Jurassic coal in the Kuqa Depression,the gas in the Kela 2 gas field would get the threshold of gas expulsion after 27 Ma,be expelled out of source rocks as"pulse action",and then filled in the gas reservoir.The peak gas-filling history took place during the past 2 Ma.
基金granted by Petro China Major Science and Technology Project(Grant No.ZD2019-18301-003)Natural Science Foundation of Shandong Province(Grant No.ZR2023MD069)+1 种基金Training Program of Innovation for Undergraduates in Shandong Institute of Petroleum and Chemical Technology(Grant No.2022084)Science Development Foundation of Dongying(Grant No.DJ2020007)。
文摘The deep Lower Jurassic Ahe Formation(J_(1a))in the Dibei–Tuzi area of the Kuqa Depression has not been extensively explored because of the complex distribution of fractures.A study was conducted to investigate the relationship between the natural fracture distribution and structural style.The J_(1a)fractures in this area were mainly high-angle shear fractures.A backward thrust structure(BTS)is favorable for gas migration and accumulation,probably because natural fractures are more developed in the middle and upper parts of a thick competent layer.The opposing thrust structure(OTS)was strongly compressed,and the natural fractures in the middle and lower parts of the thick competent layer around the fault were more intense.The vertical fracture distribution in the thick competent layers of an imbricate-thrust structure(ITS)differs from that of BTS and OTS.The intensity of the fractures in the ITS anticline is similar to that in the BTS.Fracture density in monoclinic strata in a ITS is controlled by faulting.Overall,the structural style controls the configuration of faults and anticlines,and the stress on the competent layers,which significantly affects deep gas reservoir fractures.The enrichment of deep tight sandstone gas is likely controlled by two closely spaced faults and a fault-related anticline.
基金financially supported by the project of investigation and evaluation of potash deposits in the Cretaceous-Tertiary salt basin of the Tarim basin from potash investigation project of China Geological Survey (1212011220790)
文摘The world petroleum exploration suggests that,about70%of the world’s potash resources were discovered during oil and gas exploration(Zheng et al.,2007).The Kuqa depression in the Tarim basin is abundant with petroleum exploration data,and
基金supported by the National Natural Science Foundation of China(No.40572085)Open Fund of State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences(No.OGL-200403)+2 种基金State Key Technologies R&D Program during the 10th Five-Year Plan Period(No.2001BA605A02-03-01 and 2004BA616A02-01-01)New-century Excellent Talent Program of Ministry of Education(No.NCET-06-0204)China Postdoctoral Science Foundation(No.2002031282).
文摘In a thermal simulation experiment of gold tubes of closed-system, calculating with the KINETICS and GOR-ISOTOPE KINETICS software, kinetic parameters of gas generation and methane carbon isotopic fractionation from Triassic-Jurassic hydrocarbon source rocks in the Kuqa depression of Tarim Basin are obtained. The activation energies of methane generated from Jurassic coal, Jurassic mudstone and Triassic mudstone in the Kuqa Depression are 197-268 kJ/mol, 180-260 kJ/mol and 214-289 kJ/mol, respectively, and their frequency factors are 5.265×10^13 s^-1, 9.761×10^11 s^-1 and 2.270×10^14 s^-1. This reflects their differences of hydrocarbon generation behaviors. The kinetic parameters of methane carbon isotopic fractionation are also different in Jurassic coal, Jurassic mudstone and Triassic mudstone, whose average activation energies are 228 kJ/mol, 205 kJ/mol and 231 kJ/mol, respectively. Combined with the geological background, the origin of natural gas in the Yinan-2 gas pool is discussed, and an accumulation model of natural gas is thus established. The Yinan- 2 gas is primarily derived from Jurassic coal-bearing source rocks in the Yangxia Sag. Main gas accumulation time is 5-0 Ma and the corresponding Ro is in the range from 1.25 %-1.95 %. The loss rate of natural gas is 25 %-30 %.
基金supported by the National Key Research and Development Project(Grant No.2018YFC0603700)research grants from the China Geological Survey(Grant Nos.DD20230408,DD20190011,DD20191011 and DD20221824)+1 种基金the Fundamental Research Funds from the Chinese Academy of Geological Sciences(Grant No.JKY202011)the Key Laboratory of Airborne Geophysics and Remote Sensing Geology Ministry of Natural Resources(Grant No.2023YFL23)。
文摘The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Cenozoic Indian-Asian collision.However,there are limited reports on the tectonic deformation and initiation of Triassic intracontinental deformation in the Tianshan range.Understanding this structural context is crucial for interpreting the early intracontinental deformation history of the Eurasian continent during the early Mesozoic.Growth strata and syn-tectonic sediments provide a rich source of information on tectonic activities and have been extensively used in the studies of orogenic belts.Based on detail fieldwork conducted in this study,the middle-late Triassic Kelamayi Formation of the northern Kuqa Depression in the southern Tianshan fold-thrust belt has been identified as the typical syn-tectonic growth strata.The youngest detrital zircon component in two lithic sandstone samples from the bottom and top of the Kelamayi growth strata yielded U-Pb ages of 223.4±3.1 and 215.5±2.9 Ma,respectively,indicating that the maximum depositional age of the bottom and top of the Kelamayi growth strata is 226-220 and 218-212 Ma.The geochronological distribution of detrital samples from the Early-Middle Triassic and Late Triassic revealed abrupt changes,suggesting a new source supply resulting from tectonic activation in the Tianshan range.The coupling relationship between the syn-tectonic sedimentation of the Kelamayi Formation and the South Tianshan fold-thrust system provides robust evidence that the Triassic intracontinental deformation of the South Tianshan range began at approximately 226-220 Ma(during the Late Triassic)and ended at approximately 218-212 Ma.These findings provide crucial constraints for understanding the intraplate deformation in the Tianshan range during the Triassic.
文摘We analyze the excess area and depth to detachment method developed by Epard and Groshong (1993), and apply it to the sand box model of Ge et al (2004) to illustrate that inadequate consideration will affect the calculation of true depth to detachment. Using the data of Yu et al (2006) to fit linear regression lines, we obtain the depths to detachment of Kela-2, Misikantage anticline and Dongqiu-8 structures, 115.74km, 14.17km, and 75.48km below the reference level (Cretaceous bottom) respectively with the excess area intercept equal to zero. However, the calculation results of depth to detachment in Yu et al (2006) are based on excess area intercept unequal to zero.
文摘The origin and distribution of formation overpressure have effect not only on hydrocarbon migration and accumulation, but also on technique of drilling well. The study and prediction of overpressure are very important in basin analysis. At present, overpressure is mostly predicted by stack velocity. The process in calculating inter-velocity from stack velocity is very complex and inevitably leads to errors. Especially, this method is not available in the case that structural compression contribution to overpressure occurred. This paper introduces a new method, impedance inversion, to predict overpressure, and the principle is discussed. This method is used to predict the overpressure in Kuqa depression, Tarim basin and as a result, the absolute errors are less than 0.1, and relative errors are less than 5 % for predicted fluid pressure coefficients to the drill stem test (DST) measurements. It suggests that this method can be widely used to predict overpressure in foreland basins.
基金supported by the China National Science and Technology Major Project(No.2016ZX05047-001-006).
文摘Paleo-oil reservoir is of great importance to understand hydrocarbon enrichment mechanism and hydrocarbon exploration potential,but is yet poorly investigated in Kuqa Depression.The occurrence of the paleo-oil reservoir in Dabei area was proved by quantitative grain fluorescence(QGF)and fluid inclusion petrography.Development history of the paleo-oil reservoir was reconstructed through:(1)oil-source correlation;(2)time coupling of source rock maturation,porosity evolution and migration pathways.The impact of paleo-oil reservoir on tight-gas accumulation was consequently discussed.Results suggest that considerable oil was accumulated in the K_(1)bs reservoir with paleo oil-water contact in Dabei 2 Well and Dabei 201 Well at 5800 and 6040 m,respectively.Crude oil was primarily sourced from Triassic source rocks with Jurassic source rocks of secondary importance,which was at oil generation window(0.7%–1.1%Ro)during 9–6 and 7.5–5 Ma,respectively.The occurrence of K_(1)bs tight reservoir(porosity<12%)was about 25 Ma,while faults and associated fractures at Kelasue structural belt were developed approximately from 8 to 3.5 Ma.Therefore,the tight oil accumulation was formed during 8–5 Ma.The paleo-oil reservoir in Dabei 1 gas field was destroyed by the evaporation fractionation in later stage.
基金financed by the National Science Foundation of China(grant No.41272170)
文摘Objective The Tarim Basin is China's largest ore-bearing interior basin, and contains mainly marine oils. The Kuqa depression, a secondary structural unit within the northem Tarim Basin, is composed of Mesozoic and Cenozoic clastic sedimentary rocks dominated by continental oil. Previous research suggests that the crude oils especially condensates in the Kuqa depression are rich in abnormally high abundant rearranged hopanes. On the basis of 41 condensate samples and five oil samples from the Kuqa depression, this work systematically discussed the relationship between biomarker parameters and rearranged hopanes and deeply investigated the influence of depositional environment, original source,