期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Correction to: Multi-domain fusion for cargo UAV fault diagnosis knowledge graph construction
1
作者 Ao Xiao Wei Yan +3 位作者 Xumei Zhang Ying Liu Hua Zhang Qi Liu 《Autonomous Intelligent Systems》 2025年第1期124-124,共1页
Following publication of the original article[1],Consent for publication is not applicable and it has been removed.The statement of Competing interests has been added.
关键词 multi domain fusion statement competing interests cargo uav fault diagnosis knowledge graph construction
原文传递
Knowledge enhanced graph inference network based entity-relation extraction and knowledge graph construction for industrial domain 被引量:4
2
作者 Zhulin HAN Jian WANG 《Frontiers of Engineering Management》 CSCD 2024年第1期143-158,共16页
With the escalating complexity in production scenarios, vast amounts of production information are retained within enterprises in the industrial domain. Probing questions of how to meticulously excavate value from com... With the escalating complexity in production scenarios, vast amounts of production information are retained within enterprises in the industrial domain. Probing questions of how to meticulously excavate value from complex document information and establish coherent information links arise. In this work, we present a framework for knowledge graph construction in the industrial domain, predicated on knowledge-enhanced document-level entity and relation extraction. This approach alleviates the shortage of annotated data in the industrial domain and models the interplay of industrial documents. To augment the accuracy of named entity recognition, domain-specific knowledge is incorporated into the initialization of the word embedding matrix within the bidirectional long short-term memory conditional random field (BiLSTM-CRF) framework. For relation extraction, this paper introduces the knowledge-enhanced graph inference (KEGI) network, a pioneering method designed for long paragraphs in the industrial domain. This method discerns intricate interactions among entities by constructing a document graph and innovatively integrates knowledge representation into both node construction and path inference through TransR. On the application stratum, BiLSTM-CRF and KEGI are utilized to craft a knowledge graph from a knowledge representation model and Chinese fault reports for a steel production line, specifically SPOnto and SPFRDoc. The F1 value for entity and relation extraction has been enhanced by 2% to 6%. The quality of the extracted knowledge graph complies with the requirements of real-world production environment applications. The results demonstrate that KEGI can profoundly delve into production reports, extracting a wealth of knowledge and patterns, thereby providing a comprehensive solution for production management. 展开更多
关键词 knowledge graph construction INDUSTRIAL BiLSTM-CRF document-level relation extraction graph inference
原文传递
A Knowledge Push Method of Complex Product Assembly Process Design Based on Distillation Model-Based Dynamically Enhanced Graph and Bayesian Network
3
作者 Fengque Pei Yaojie Lin +2 位作者 Jianhua Liu Cunbo Zhuang Sikuan Zhai 《Chinese Journal of Mechanical Engineering》 2025年第6期117-134,共18页
Under the paradigm of Industry 5.0,intelligent manufacturing transcends mere efficiency enhancement by emphasizing human-machine collaboration,where human expertise plays a central role in assembly processes.Despite a... Under the paradigm of Industry 5.0,intelligent manufacturing transcends mere efficiency enhancement by emphasizing human-machine collaboration,where human expertise plays a central role in assembly processes.Despite advancements in intelligent and digital technologies,assembly process design still heavily relies on manual knowledge reuse,and inefficiencies and inconsistent quality in process documentation are caused.To address the aforementioned issues,this paper proposes a knowledge push method of complex product assembly process design based on distillation model-based dynamically enhanced graph and Bayesian network.First,an initial knowledge graph is constructed using a BERT-BiLSTM-CRF model trained with integrated human expertise and a fine-tuned large language model.Then,a confidence-based dynamic weighted fusion strategy is employed to achieve dynamic incremental construction of the knowledge graph with low resource consumption.Subsequently,a Bayesian network model is constructed based on the relationships between assembly components,assembly features,and operations.Bayesian network reasoning is used to push assembly process knowledge under different design requirements.Finally,the feasibility of the Bayesian network construction method and the effectiveness of Bayesian network reasoning are verified through a specific example,significantly improving the utilization of assembly process knowledge and the efficiency of assembly process design. 展开更多
关键词 Complex product assembly process Large language model Dynamic incremental construction of knowledge graph Bayesian network knowledge push
在线阅读 下载PDF
Medical Knowledge Graph:Data Sources,Construction,Reasoning,and Applications 被引量:16
4
作者 Xuehong Wu Junwen Duan +1 位作者 Yi Pan Min Li 《Big Data Mining and Analytics》 EI CSCD 2023年第2期201-217,共17页
Medical knowledge graphs(MKGs)are the basis for intelligent health care,and they have been in use in a variety of intelligent medical applications.Thus,understanding the research and application development of MKGs wi... Medical knowledge graphs(MKGs)are the basis for intelligent health care,and they have been in use in a variety of intelligent medical applications.Thus,understanding the research and application development of MKGs will be crucial for future relevant research in the biomedical field.To this end,we offer an in-depth review of MKG in this work.Our research begins with the examination of four types of medical information sources,knowledge graph creation methodologies,and six major themes for MKG development.Furthermore,three popular models of reasoning from the viewpoint of knowledge reasoning are discussed.A reasoning implementation path(RIP)is proposed as a means of expressing the reasoning procedures for MKG.In addition,we explore intelligent medical applications based on RIP and MKG and classify them into nine major types.Finally,we summarize the current state of MKG research based on more than 130 publications and future challenges and opportunities. 展开更多
关键词 medical knowledge graph knowledge graph construction knowledge reasoning intelligent medical applications intelligent healthcare
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部