A time-resolved multispectral X-ray imaging approach with new version of multi-channel Kirkpatrick- Baez (KB) microscope is developed for laser plasma diagnostics at the kilo joule-class Shenguang-II laser facility ...A time-resolved multispectral X-ray imaging approach with new version of multi-channel Kirkpatrick- Baez (KB) microscope is developed for laser plasma diagnostics at the kilo joule-class Shenguang-II laser facility (SG-II). The microscope uses a total external reflection mirror in the sagittal direction and an array of multilayer mirrors in the tangential direction to obtain multiple individual high-resolution, high- throughput, and quasi-monochromatic X-ray images. The time evolution of the imploded target in multiple X-ray energy bands can be acquired when coupled with an X-ray streak camera. The experimental result of the time-resolved 2.5 and 3.0 keV dual-spectral self-emission imaging of the undoped CH shell target on SG-II is given.展开更多
During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest...During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.展开更多
In comparison with conventional experimental teaching methods,the implementation of the Motic digital microscope mutual system in the experimental teaching of medicinal botany has been demonstrated to be a highly effi...In comparison with conventional experimental teaching methods,the implementation of the Motic digital microscope mutual system in the experimental teaching of medicinal botany has been demonstrated to be a highly efficacious approach to enhance the teaching level of experimental courses in medicinal botany.The implementation of a digital microscope mutual system in experimental teaching not only enhances students practical skills in laboratory operations but also increases classroom efficiency.Furthermore,it supports personalized development among students while fostering innovative thinking,independent learning capabilities,and analysis and problem-solving skills.Additionally,this approach contributes to the enhancement of students scientific literacy.展开更多
To investigate the nucleation behavior during the single-phased metallic solidification process,the commercial ultrapure ferritic stainless steels with no(Initial steel)and various melt treatments(R1,MR1,Y2,MY1,and M1...To investigate the nucleation behavior during the single-phased metallic solidification process,the commercial ultrapure ferritic stainless steels with no(Initial steel)and various melt treatments(R1,MR1,Y2,MY1,and M1 steels)were used to carry out the differential scanning colorimetry(DSC)and high-temperature confocal laser scanning microscope(HT-CLSM)experiments.Based on the results of DSC experiments,the equilibrium solidification process as well as the relationship among the critical undercooling degree(△T_(c)^(DSC)),latent heat of fusion/crystallization(△H_(f)/△H_(c)),equiaxed grain ratio(ER),and average grain size(△_(ave)^(ingot))was revealed.ER is increased with the decreasing△T_(c)^(DSC)and increasing△H_(f)/△H_(c);however,△_(ave)^(ingot)is decreased with them.Referring to the results of HT-CLSM experiments,the average sizes of micro-/macrostructures(d_(ave)/D_(ave)/)are decreased with the increasing cooling rate,as well as the difference between and apparent critical undercooling degree(△T_(c)^(CLSM))was revealed.The heterogeneous nucleation of the crystal nuclei occurs only if△T_(c)^(CLSM)>△T_(c)^(DSC).Combining with the interfacial wetting-lattice mismatch heterogeneous nucleation model,the dynamic mechanism of the metallic solidification was revealed.The as-cast grains of the melt-treated samples were obviously refined,owing to the much higher actual heterogeneous nucleation rates(I_(heter.,i))obtained through melt treatments,and the heterogeneous nucleation rates(I_(heter.,ij))for all samples are increased with the cooling rates,firmly confirming that the as-cast grains of each sample could be refined by the increasing cooling rates.展开更多
To address the issues of short setting time and high bleeding rate of A component,which easily cause pipe plugging and poor grouting performance when a two-component grout is injected synchronously behind the Segmenta...To address the issues of short setting time and high bleeding rate of A component,which easily cause pipe plugging and poor grouting performance when a two-component grout is injected synchronously behind the Segmental Lining,the inorganic retarder sodium pyrophosphate(TSPP)and three organic retarders were added to the A component:sodium citrate(SC),sodium tartrate(ST)and glycerol(GLY).The effect law and microscopic mechanism of viscosity,bleeding rate,setting time,gelling time,compressive strength,and stone rate were investigated.The results revealed that the addition of retarders could enhance the stability and setting time of the A component and increase the gelling time,stone rate,and compressive strength of two-component grout.Among them,the performance of the grout with an SC dosage of 0.1% was superior.The bleeding rate of this grout was reduced to 3.5%,the stone rate of the two-component grout was more than 99%,and the early compressive strength and late compressive strength of this grout were increased by approximately 35% and 7%,respectively.The initial and final setting time of the A component with a TSPP dosage of 0.3% was the longest,which was prolonged to 17 and 26 h,respectively.Microscopic analysis revealed that the four retarders hindered the hydration process of cement through complexation and adsorption,and inhibited the hydration of C_(3)S and the crystallisation of CH.Moreover,they reduced the defects caused by the rapid reaction of water glass and CH on the solid phase structure,enabled the microstructure of the stone body to be denser,and subsequently,enhanced the compressive strength.展开更多
[Objective] The research aimed to provide reference for classification of pomegranate cultivars and studies of genetic relationship among pomegranate cultivars.[Method] The electron microscope scanning was used to com...[Objective] The research aimed to provide reference for classification of pomegranate cultivars and studies of genetic relationship among pomegranate cultivars.[Method] The electron microscope scanning was used to comparatively observe leaf epidermal structures of 4 pomegranate cultivars.[Result] The upper epidermal structures of 4 pomegranate cultivars were similar and showed reticular structure .However, the differences existed in lower epidermis,such as cell shape,cell size and arrangement mode of cell as well as stomatal density,while the structures of leaf vein in lower epidermis of 4 pomegranate cultivars were similar.[Conclusion] The research provided morphological references for studying heterosis of pomegranate to some extent.展开更多
The solidification process of a conventional superalloy, IN718, was investigated by confocal scanning laser microscope (CSLM). The liquid fraction during solidification was obtained as a function of real time and te...The solidification process of a conventional superalloy, IN718, was investigated by confocal scanning laser microscope (CSLM). The liquid fraction during solidification was obtained as a function of real time and temperature in reference with the in-situ observation. The characteristics of L→γ transformation were analyzed and the γ growing rate of each stage was also calculated. Scheil equation was employed to predict the segregation behavior, and the predict results are in consistence with the experimental results. As a result, the confocal scanning laser microscope shows a great potential for solidification process research.展开更多
Changes of calmodulin (CaM) distribution in the embryo sac of rice (Oryza sativa subsp. Japonica) at various stages before and after fertilization have been investigated by using immunogold electron microscopy. Before...Changes of calmodulin (CaM) distribution in the embryo sac of rice (Oryza sativa subsp. Japonica) at various stages before and after fertilization have been investigated by using immunogold electron microscopy. Before pollination, both cytoplasm and vacuoles of the egg cell, synergids and central cell were labeled by gold particles. A small amount of gold particles were localized in the nucleus, endoplasmic reticulum, mitochondria and dictyosomes. From pollination to fertilization, CaM amount increased in these cells, especially rich in the starch of amyloplasts. Increase of gold particles in the central cell began about 2 h earlier than that in the egg cell. There was no distinct difference of CaM amount between the degenerated and the persistent synergids. It is interesting to observe an obvious change of CaM distribution form during pollination and fertilization from scattered single particles to clustered particles, and back again to single particles after the fertilization finished. CaM was also localized extracellularly in the embryo sac wall as well as in the wall and intercellular space of nucellus cells. The extracellular CaM also changes in its amount and form after pollination. These results suggest that CaM, either intra- or extra-cellular, may play important roles in fertilization and zygote formation.展开更多
[Objective]The experiment aimed to explore a new way for observing surface structure of Nostoc sphaeroides Kutzing. [Method] The scanning electron microscope was used to observe the epidermal ultrastructure of wild an...[Objective]The experiment aimed to explore a new way for observing surface structure of Nostoc sphaeroides Kutzing. [Method] The scanning electron microscope was used to observe the epidermal ultrastructure of wild and cultured Nostoc sphaeroides Kutzing. [ Result] The epidermis of wild and cultured Nostoc sphaeroides Kutzing showed mixture structure of fibril colloid which was reticular arranged. The difference between wild and cultured Nostoc sphaeroides Kutzing was that the outer epidermis of cultured Nostoc sphaeroides Kutzing had trichome distribution but the wild Nostoc sphaeroides Kutzing did not has such distribution. The obsevation results of under smaller than 10 μm by scanning electron microscope was touched thick and showed many folds and distortions. [ Conclusion] The scanning electron microscope was an effective way to study development of Nostoc sphaeroides Kutzing colony and it was worth popularizing.展开更多
[ Objective] The paper was to observe Helicotylenchus digonicus by scanning electron microscope (SEM). [ Method ] H. digonicus collected from Changxing of Zhejiang Province was observed under scanning electron micro...[ Objective] The paper was to observe Helicotylenchus digonicus by scanning electron microscope (SEM). [ Method ] H. digonicus collected from Changxing of Zhejiang Province was observed under scanning electron microscope, and its morphological structure was confmned under optical microscope. [ Resuit]The nematode specimens fixed by glutaraldehyde and osmium tetroxide and prepared by critical point drying were unmodified and unshrinkable with clear mor- phological structure, which could be scanned very well by scanning electron microscope. [ Conclusion ] The study provided reference for study and control of H. digonicus.展开更多
We demonstrate a home-built electrochemical scanning tunneling microscope (ECSTM). The ECSTM exhibits highly stable performance. The drifting rates in XY and Z directions of the ECSTM are about 67 and 55.6 pm/min, r...We demonstrate a home-built electrochemical scanning tunneling microscope (ECSTM). The ECSTM exhibits highly stable performance. The drifting rates in XY and Z directions of the ECSTM are about 67 and 55.6 pm/min, respectively. Moreover, a specially designed scanner unit successfully solves the well-known problem of large leakage current in high humidity atmosphere. The mechanical structure of the ECSTM is described in detail. The excellent performances of the system are demonstrated by the measured STM images (in copper sulfate solution), including clean and well-ordered large area morphology of Au(111) and the atomically resolved image of highly oriented pyrolytic graphite.展开更多
To understand the deformation and removal mechanism of material on nano-scale at ultralow loads,a systemic study on AFM micro/nano-machining on single crystal ailicon is conducted. The results indicate that AFM nano- ...To understand the deformation and removal mechanism of material on nano-scale at ultralow loads,a systemic study on AFM micro/nano-machining on single crystal ailicon is conducted. The results indicate that AFM nano- machining has a precisely dimensional controllability and a good surface quality on nanometer scale.A SEM is adopted to observe nano-machined region and chips,the results indicate that the material removal mechanisms change with the applied normal load. An XPS is used to analyze the changes of chemical composition inside and outside the nano-machined region respectively.The nano-indentation which is conducted with the same AFM diamond tip on the machined region shows a big discrepancy compared with that on the macro-scale. The calculated results show higher nano-hardness and elastic modulus than normal values .This phenomenon on be regarded as the indentation size effect(ISE).展开更多
We present the design and performance of a home-built scanning tunneling microscope (STM), which is compact (66 mm tall and 25 mm in diameter), yet equipped with a 3D atomic precision piezoelectric motor in which ...We present the design and performance of a home-built scanning tunneling microscope (STM), which is compact (66 mm tall and 25 mm in diameter), yet equipped with a 3D atomic precision piezoelectric motor in which the Z coarse approach relies on a high simplic-ity friction-type walker (of our own invention) driven by an axially cut piezoelectric tube. The walker is vertically inserted in a piezoelectric scanner tube (PST) with its brim laying at on the PST end as the inertial slider (driven by the PST) for the XZ (sample plane) motion. The STM is designed to be capable of searching rare microscopic targets (defects, dopants, boundaries, nano-devices, etc.) in a macroscopic sample area (square millimeters) under extreme conditions (low temperatures, strong magnetic elds, etc.) in which it ts. It gives good atomic resolution images after scanning a highly oriented pyrolytic graphite sample in air at room temperature.展开更多
Chalkiness characters affect not only the grain appearance,milling,eating and cooking qualities but also the grain nutritional quality in rice,thus it is one of the most important traits in rice. It is very important ...Chalkiness characters affect not only the grain appearance,milling,eating and cooking qualities but also the grain nutritional quality in rice,thus it is one of the most important traits in rice. It is very important for us to investigate the relation of the chalkiness formation and the development of endosperm structure and starch granule of different rice varieties. Here,we have investigated the chalkiness characters such as chalkiness rate,chalkiness degree and chalkiness area in 15 japonica rice varieties from southern Henan. Furthermore,the endosperm structure and starch granules of rice grain were also observed with scanning electron microscope. The results showed that the 15 japonica varieties have a significantly linear relationship between the chalkiness rate and chalkiness degree. Among the varieties,the biggest difference is the chalkiness rate,the second is the chalkiness area,and the last is the chalkiness degree. Moreover,there is a certain correlation between the distribution of starch granules,the arrangement of endosperm cells and the occurrence of grain chalkiness in the different rice varieties. For the same variety,the starch granules of chalky and non-chalky grains have obvious difference,while the starch granules from the transparent part of chalky rice and non-chalky rice do not have significant difference. The results would provide useful references for the improvement of grain quality in rice.展开更多
In this work, we introduce position-resolved surface characterization and nanofabrication using an optical microscope(OM) combined with a nanopipette-based quartz tuning fork atomic force microscope(nanopipette/QTF-AF...In this work, we introduce position-resolved surface characterization and nanofabrication using an optical microscope(OM) combined with a nanopipette-based quartz tuning fork atomic force microscope(nanopipette/QTF-AFM) system. This system is used to accurately determine substrate position and nanoscale phenomena under ambient conditions. Solutions consisting of 5 nm Au nanoparticles, nanowires, and polydimethylsiloxane(PDMS) are deposited onto the substrate through the nano/microaperture of a pulled pipette. Nano/microscale patterning is performed using a nanopipette/QTF-AFM, while position is resolved by monitoring the substrate with a custom OM. With this tool, one can perform surface characterization(force spectroscopy/microscopy) using the quartz tuning fork(QTF) sensor. Nanofabrication is achieved by accurately positioning target materials on the surface, and on-demand delivery and patterning of various solutions for molecular architecture.展开更多
Two nonlinear control techniques are proposed for an atomic force microscopesystem. Initially, a learning-based control algorithm is developed for the microcantilever-samplesystem that achieves asymptotic cantilever t...Two nonlinear control techniques are proposed for an atomic force microscopesystem. Initially, a learning-based control algorithm is developed for the microcantilever-samplesystem that achieves asymptotic cantilever tip tracking for periodic trajectories. Specifically, thecontrol approach utilizes a learning-based feedforward term to compensate for periodic dynamics andhigh-gain terms to account for non-periodic dynamics. An adaptive control algorithm is thendeveloped to achieve asymptotic cantilever tip tracking for bounded tip trajectories despiteuncertainty throughout the system parameters. Simulation results are provided to illustrate theefficacy and performance of the control strategies.展开更多
Thermal diffusion of Si atoms at the interface in Mo/Si multilayers was observed with an imaging type soft X ray emission microscope developed by us. It was possible to observe the diffusion with 0.2nm depth resolutio...Thermal diffusion of Si atoms at the interface in Mo/Si multilayers was observed with an imaging type soft X ray emission microscope developed by us. It was possible to observe the diffusion with 0.2nm depth resolution in the direction normal to the interface by comparing the emission intensity for exactly the same position. The diffusion coefficient of Si atoms in Mo at 600℃ was roughly estimated to be 6.0×10 17 cm 2/s.展开更多
基金the National Natural Science Foundation of China(Nos.11305116 and 11105098)the National Key Technology Support Program(No.2013BAK14B02)the National"973"Program ofChina(No.2011CB922203)
文摘A time-resolved multispectral X-ray imaging approach with new version of multi-channel Kirkpatrick- Baez (KB) microscope is developed for laser plasma diagnostics at the kilo joule-class Shenguang-II laser facility (SG-II). The microscope uses a total external reflection mirror in the sagittal direction and an array of multilayer mirrors in the tangential direction to obtain multiple individual high-resolution, high- throughput, and quasi-monochromatic X-ray images. The time evolution of the imploded target in multiple X-ray energy bands can be acquired when coupled with an X-ray streak camera. The experimental result of the time-resolved 2.5 and 3.0 keV dual-spectral self-emission imaging of the undoped CH shell target on SG-II is given.
基金financially supported by the National Natural Science Foundation of China(Nos.52274315 and 52374320)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-011A1 and FRF-DF22-16)。
文摘During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
基金Supported by Major Project of School-level Teaching Reform and Research of Guangxi University of Chinese Medicine(2022A006)。
文摘In comparison with conventional experimental teaching methods,the implementation of the Motic digital microscope mutual system in the experimental teaching of medicinal botany has been demonstrated to be a highly efficacious approach to enhance the teaching level of experimental courses in medicinal botany.The implementation of a digital microscope mutual system in experimental teaching not only enhances students practical skills in laboratory operations but also increases classroom efficiency.Furthermore,it supports personalized development among students while fostering innovative thinking,independent learning capabilities,and analysis and problem-solving skills.Additionally,this approach contributes to the enhancement of students scientific literacy.
基金supported by the National Natural Science Foundation of China(Grant Nos.52274339,52174321,52074186,and 52104337)Natural Science Foundation of Jiangsu Province(Grant No.BK20231317)China Baowu Low-Carbon Metallurgy Innovation Fund(Grant No.BWLCF202108).
文摘To investigate the nucleation behavior during the single-phased metallic solidification process,the commercial ultrapure ferritic stainless steels with no(Initial steel)and various melt treatments(R1,MR1,Y2,MY1,and M1 steels)were used to carry out the differential scanning colorimetry(DSC)and high-temperature confocal laser scanning microscope(HT-CLSM)experiments.Based on the results of DSC experiments,the equilibrium solidification process as well as the relationship among the critical undercooling degree(△T_(c)^(DSC)),latent heat of fusion/crystallization(△H_(f)/△H_(c)),equiaxed grain ratio(ER),and average grain size(△_(ave)^(ingot))was revealed.ER is increased with the decreasing△T_(c)^(DSC)and increasing△H_(f)/△H_(c);however,△_(ave)^(ingot)is decreased with them.Referring to the results of HT-CLSM experiments,the average sizes of micro-/macrostructures(d_(ave)/D_(ave)/)are decreased with the increasing cooling rate,as well as the difference between and apparent critical undercooling degree(△T_(c)^(CLSM))was revealed.The heterogeneous nucleation of the crystal nuclei occurs only if△T_(c)^(CLSM)>△T_(c)^(DSC).Combining with the interfacial wetting-lattice mismatch heterogeneous nucleation model,the dynamic mechanism of the metallic solidification was revealed.The as-cast grains of the melt-treated samples were obviously refined,owing to the much higher actual heterogeneous nucleation rates(I_(heter.,i))obtained through melt treatments,and the heterogeneous nucleation rates(I_(heter.,ij))for all samples are increased with the cooling rates,firmly confirming that the as-cast grains of each sample could be refined by the increasing cooling rates.
基金Funded by the National Natural Science Foundation of China(No.52378394)the Fundamental Research Funds for the Central Universities(No.B230201037)。
文摘To address the issues of short setting time and high bleeding rate of A component,which easily cause pipe plugging and poor grouting performance when a two-component grout is injected synchronously behind the Segmental Lining,the inorganic retarder sodium pyrophosphate(TSPP)and three organic retarders were added to the A component:sodium citrate(SC),sodium tartrate(ST)and glycerol(GLY).The effect law and microscopic mechanism of viscosity,bleeding rate,setting time,gelling time,compressive strength,and stone rate were investigated.The results revealed that the addition of retarders could enhance the stability and setting time of the A component and increase the gelling time,stone rate,and compressive strength of two-component grout.Among them,the performance of the grout with an SC dosage of 0.1% was superior.The bleeding rate of this grout was reduced to 3.5%,the stone rate of the two-component grout was more than 99%,and the early compressive strength and late compressive strength of this grout were increased by approximately 35% and 7%,respectively.The initial and final setting time of the A component with a TSPP dosage of 0.3% was the longest,which was prolonged to 17 and 26 h,respectively.Microscopic analysis revealed that the four retarders hindered the hydration process of cement through complexation and adsorption,and inhibited the hydration of C_(3)S and the crystallisation of CH.Moreover,they reduced the defects caused by the rapid reaction of water glass and CH on the solid phase structure,enabled the microstructure of the stone body to be denser,and subsequently,enhanced the compressive strength.
文摘[Objective] The research aimed to provide reference for classification of pomegranate cultivars and studies of genetic relationship among pomegranate cultivars.[Method] The electron microscope scanning was used to comparatively observe leaf epidermal structures of 4 pomegranate cultivars.[Result] The upper epidermal structures of 4 pomegranate cultivars were similar and showed reticular structure .However, the differences existed in lower epidermis,such as cell shape,cell size and arrangement mode of cell as well as stomatal density,while the structures of leaf vein in lower epidermis of 4 pomegranate cultivars were similar.[Conclusion] The research provided morphological references for studying heterosis of pomegranate to some extent.
基金Project(08dj1400402) supported by the Major Program for the Fundamental Research of Shanghai Committee of Science and Technology, China
文摘The solidification process of a conventional superalloy, IN718, was investigated by confocal scanning laser microscope (CSLM). The liquid fraction during solidification was obtained as a function of real time and temperature in reference with the in-situ observation. The characteristics of L→γ transformation were analyzed and the γ growing rate of each stage was also calculated. Scheil equation was employed to predict the segregation behavior, and the predict results are in consistence with the experimental results. As a result, the confocal scanning laser microscope shows a great potential for solidification process research.
文摘Changes of calmodulin (CaM) distribution in the embryo sac of rice (Oryza sativa subsp. Japonica) at various stages before and after fertilization have been investigated by using immunogold electron microscopy. Before pollination, both cytoplasm and vacuoles of the egg cell, synergids and central cell were labeled by gold particles. A small amount of gold particles were localized in the nucleus, endoplasmic reticulum, mitochondria and dictyosomes. From pollination to fertilization, CaM amount increased in these cells, especially rich in the starch of amyloplasts. Increase of gold particles in the central cell began about 2 h earlier than that in the egg cell. There was no distinct difference of CaM amount between the degenerated and the persistent synergids. It is interesting to observe an obvious change of CaM distribution form during pollination and fertilization from scattered single particles to clustered particles, and back again to single particles after the fertilization finished. CaM was also localized extracellularly in the embryo sac wall as well as in the wall and intercellular space of nucellus cells. The extracellular CaM also changes in its amount and form after pollination. These results suggest that CaM, either intra- or extra-cellular, may play important roles in fertilization and zygote formation.
文摘[Objective]The experiment aimed to explore a new way for observing surface structure of Nostoc sphaeroides Kutzing. [Method] The scanning electron microscope was used to observe the epidermal ultrastructure of wild and cultured Nostoc sphaeroides Kutzing. [ Result] The epidermis of wild and cultured Nostoc sphaeroides Kutzing showed mixture structure of fibril colloid which was reticular arranged. The difference between wild and cultured Nostoc sphaeroides Kutzing was that the outer epidermis of cultured Nostoc sphaeroides Kutzing had trichome distribution but the wild Nostoc sphaeroides Kutzing did not has such distribution. The obsevation results of under smaller than 10 μm by scanning electron microscope was touched thick and showed many folds and distortions. [ Conclusion] The scanning electron microscope was an effective way to study development of Nostoc sphaeroides Kutzing colony and it was worth popularizing.
文摘[ Objective] The paper was to observe Helicotylenchus digonicus by scanning electron microscope (SEM). [ Method ] H. digonicus collected from Changxing of Zhejiang Province was observed under scanning electron microscope, and its morphological structure was confmned under optical microscope. [ Resuit]The nematode specimens fixed by glutaraldehyde and osmium tetroxide and prepared by critical point drying were unmodified and unshrinkable with clear mor- phological structure, which could be scanned very well by scanning electron microscope. [ Conclusion ] The study provided reference for study and control of H. digonicus.
文摘We demonstrate a home-built electrochemical scanning tunneling microscope (ECSTM). The ECSTM exhibits highly stable performance. The drifting rates in XY and Z directions of the ECSTM are about 67 and 55.6 pm/min, respectively. Moreover, a specially designed scanner unit successfully solves the well-known problem of large leakage current in high humidity atmosphere. The mechanical structure of the ECSTM is described in detail. The excellent performances of the system are demonstrated by the measured STM images (in copper sulfate solution), including clean and well-ordered large area morphology of Au(111) and the atomically resolved image of highly oriented pyrolytic graphite.
基金This project is supported by National Natural ScienceFoundation of China (No.59835180) and Science andTechnology Foundatio
文摘To understand the deformation and removal mechanism of material on nano-scale at ultralow loads,a systemic study on AFM micro/nano-machining on single crystal ailicon is conducted. The results indicate that AFM nano- machining has a precisely dimensional controllability and a good surface quality on nanometer scale.A SEM is adopted to observe nano-machined region and chips,the results indicate that the material removal mechanisms change with the applied normal load. An XPS is used to analyze the changes of chemical composition inside and outside the nano-machined region respectively.The nano-indentation which is conducted with the same AFM diamond tip on the machined region shows a big discrepancy compared with that on the macro-scale. The calculated results show higher nano-hardness and elastic modulus than normal values .This phenomenon on be regarded as the indentation size effect(ISE).
文摘We present the design and performance of a home-built scanning tunneling microscope (STM), which is compact (66 mm tall and 25 mm in diameter), yet equipped with a 3D atomic precision piezoelectric motor in which the Z coarse approach relies on a high simplic-ity friction-type walker (of our own invention) driven by an axially cut piezoelectric tube. The walker is vertically inserted in a piezoelectric scanner tube (PST) with its brim laying at on the PST end as the inertial slider (driven by the PST) for the XZ (sample plane) motion. The STM is designed to be capable of searching rare microscopic targets (defects, dopants, boundaries, nano-devices, etc.) in a macroscopic sample area (square millimeters) under extreme conditions (low temperatures, strong magnetic elds, etc.) in which it ts. It gives good atomic resolution images after scanning a highly oriented pyrolytic graphite sample in air at room temperature.
基金Supported by Key Project of Science and Technology in Henan Province(152102110100,152102110036)National Natural Science Foundation of China(U1604110,U1404319,31270727,31600992)+3 种基金Nanhu Scholars Program for Young Scholars of XYNU(2016056)Major Science and Technology Project in Henan Province(121100110200)Students Scientific Research Fund of Xinyang Normal University(2015-DXS-158)Fund of Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains(2016020)
文摘Chalkiness characters affect not only the grain appearance,milling,eating and cooking qualities but also the grain nutritional quality in rice,thus it is one of the most important traits in rice. It is very important for us to investigate the relation of the chalkiness formation and the development of endosperm structure and starch granule of different rice varieties. Here,we have investigated the chalkiness characters such as chalkiness rate,chalkiness degree and chalkiness area in 15 japonica rice varieties from southern Henan. Furthermore,the endosperm structure and starch granules of rice grain were also observed with scanning electron microscope. The results showed that the 15 japonica varieties have a significantly linear relationship between the chalkiness rate and chalkiness degree. Among the varieties,the biggest difference is the chalkiness rate,the second is the chalkiness area,and the last is the chalkiness degree. Moreover,there is a certain correlation between the distribution of starch granules,the arrangement of endosperm cells and the occurrence of grain chalkiness in the different rice varieties. For the same variety,the starch granules of chalky and non-chalky grains have obvious difference,while the starch granules from the transparent part of chalky rice and non-chalky rice do not have significant difference. The results would provide useful references for the improvement of grain quality in rice.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2013-056344)Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (2013R1A6A3A03063900)+1 种基金support from Center for Nano-Liquidsupport from the National Science Foundation OISE Grant #0853104
文摘In this work, we introduce position-resolved surface characterization and nanofabrication using an optical microscope(OM) combined with a nanopipette-based quartz tuning fork atomic force microscope(nanopipette/QTF-AFM) system. This system is used to accurately determine substrate position and nanoscale phenomena under ambient conditions. Solutions consisting of 5 nm Au nanoparticles, nanowires, and polydimethylsiloxane(PDMS) are deposited onto the substrate through the nano/microaperture of a pulled pipette. Nano/microscale patterning is performed using a nanopipette/QTF-AFM, while position is resolved by monitoring the substrate with a custom OM. With this tool, one can perform surface characterization(force spectroscopy/microscopy) using the quartz tuning fork(QTF) sensor. Nanofabrication is achieved by accurately positioning target materials on the surface, and on-demand delivery and patterning of various solutions for molecular architecture.
文摘Two nonlinear control techniques are proposed for an atomic force microscopesystem. Initially, a learning-based control algorithm is developed for the microcantilever-samplesystem that achieves asymptotic cantilever tip tracking for periodic trajectories. Specifically, thecontrol approach utilizes a learning-based feedforward term to compensate for periodic dynamics andhigh-gain terms to account for non-periodic dynamics. An adaptive control algorithm is thendeveloped to achieve asymptotic cantilever tip tracking for bounded tip trajectories despiteuncertainty throughout the system parameters. Simulation results are provided to illustrate theefficacy and performance of the control strategies.
文摘Thermal diffusion of Si atoms at the interface in Mo/Si multilayers was observed with an imaging type soft X ray emission microscope developed by us. It was possible to observe the diffusion with 0.2nm depth resolution in the direction normal to the interface by comparing the emission intensity for exactly the same position. The diffusion coefficient of Si atoms in Mo at 600℃ was roughly estimated to be 6.0×10 17 cm 2/s.