In this study,six kinetics models of indomethacin hydrophilic gel patch transdermal in vitro release was established,including zero-level,first-order,Higuchi-level,Ritger-Peppas,Weibull and Hixcon-Crowell dynamic equa...In this study,six kinetics models of indomethacin hydrophilic gel patch transdermal in vitro release was established,including zero-level,first-order,Higuchi-level,Ritger-Peppas,Weibull and Hixcon-Crowell dynamic equations.The chemical permeation enhancers,including 3%and 5%Azone,and iontophoresis were used as the control.Transdermal diffusion tests were performed in vitro and indomethacin was quantified by high performance liquid chromatography system.The transdermal parameter of the Higuchi and Weibull dynamic equations,indicated that Fu’s cupping therapy(FCT)could significantly improve Higuchi and Weibull kinetic parameters in vitro transdermal,increased transdermal rate and permeability coefficient,reduced lagging time.Additionally,statistical analysis speculated the skin barrier function could be restored after 46 h treatment.Hence,as a new physical transdermal drug delivery technology,transdermal permeation effects produced by FCT are obvious,which has the characteristics of traditional Chinese medicine and has important clinical application value.展开更多
This study was performed in two phases of work.In the first stage,four conventional first-order flotation kinetics models were fitted to the measured recoveries data and the best model were selected.In the second stag...This study was performed in two phases of work.In the first stage,four conventional first-order flotation kinetics models were fitted to the measured recoveries data and the best model were selected.In the second stage,influence of pH,solid concentration,water chemistry and the amount of collector dosage were investigated on kinetics parameters including flotation rate constant and ultimate recovery.The results indicated that that perfectly mixed reactor model and Kelsall model gave the best and the weakest fit to the experimental data,respectively.It was observed that flotation rate constant and ultimate recovery were strongly affected by chemical factors investigated especially water quality.The flotation rate constant decreased with increasing the solids content,while ultimate recovery increased to certain value and thereafter reduced.It was also found that the most values of flotation rate constant and ultimate recovery obtained in dosage of collector are 30 and 40 g/t,respectively.展开更多
The vacuum volatilization kinetics of Pb in In-Pb solder was investigated.The results indicate a significant increase in the vacuum volatilization rates of Pb,25In-75Pb,40In-60Pb,and In with increasing temperatures fr...The vacuum volatilization kinetics of Pb in In-Pb solder was investigated.The results indicate a significant increase in the vacuum volatilization rates of Pb,25In-75Pb,40In-60Pb,and In with increasing temperatures from 923 to 1123 K,system pressure of 3 Pa and holding time of 30 min.The mass transfer coefficients and apparent activation energies of Pb and its alloys were determined at various temperatures.Additionally,a kinetics model was developed to describe Pb vacuum volatilization in high-temperature melts.It is obtained that the vapor mass transfer is the factor limiting the vacuum volatilization rates of Pb and In-Pb alloys under the above specified conditions.展开更多
The cold-rolled quenching and partitioning(Q&P)steel with an initial microstructure of deformed ferrite and pearlite was studied.The microstructural evolution under various heating rates of 1.78,50,and 300℃/s was...The cold-rolled quenching and partitioning(Q&P)steel with an initial microstructure of deformed ferrite and pearlite was studied.The microstructural evolution under various heating rates of 1.78,50,and 300℃/s was investigated using microstructural characterization and theoretical modeling.At the same time,the characteristics of recrystallization and austenite formation kinetics were decoupled by examining recrystallized ferrite and deformed ferrite as initial conditions.The findings revealed that the austenite formation during continuous heating can be simplified into two stages:(i)the early nucleation-dominated formation stage and(ii)the later grain growth-dominated stage,resulting in the development of a modified two-stage model based on Johnson-Mehl-Avrami-Kolmogorov.Further experiments confirmed that when the austenite volume fraction exceeded approximately 5% at a heating rate of 1.78℃/s,ferrite recrystallization was suppressed.In consequence,a mixed model including recrystallization kinetics was employed to couple the austenite formation occurring in deformed ferrite and recrystallized ferrite,thereby describing the austenite formation kinetics affected by recrystallization.Precise predictions of non-isothermal austenite formation kinetics in cold-rolled Q&P steel were achieved during slow and ultrafast heating processes by integrating the suppression effect into the model for austenite formation.展开更多
Industrial ebullated-bed is an important device for promoting the cleaning and upgrading of oil products. The lumped kinetic model is a powerful tool for predicting the product yield of the ebullated-bed residue hydro...Industrial ebullated-bed is an important device for promoting the cleaning and upgrading of oil products. The lumped kinetic model is a powerful tool for predicting the product yield of the ebullated-bed residue hydrogenation (EBRH) unit, However, during the long-term operation of the device, there are phenomena such as low frequency of material property analysis leading to limited operating data and diverse operating modes at the same time scale, which poses a huge challenge to building an accurate product yield prediction model. To address these challenges, a data augmentation-based eleven lumped reaction kinetics mechanism model was constructed. This model combines generative adversarial networks, outlier elimination, and L2 norm data filtering to expand the dataset and utilizes kernel principal component analysis-fuzzy C-means for operating condition partitioning. Based on the hydrogenation reaction mechanism, a single and sub operating condition eleven lumped reaction kinetics model of an ebullated-bed residue hydrogenation unit, comprising 55 reaction paths and 110 parameters, was constructed before and after data augmentation. Compared to the single model before data enhancement, the average absolute error of the sub-models under data enhancement division was reduced by 23%. Thus, these findings can help guide the operation and optimization of the production process.展开更多
The disposal of spent activated carbon(AC) will inevitably create secondary pollution. In overcoming this problem, the spent AC can be regenerated by means of biological approach. Bioregeneration is the phenomenon in ...The disposal of spent activated carbon(AC) will inevitably create secondary pollution. In overcoming this problem, the spent AC can be regenerated by means of biological approach. Bioregeneration is the phenomenon in which through the action of microorganisms, the adsorbed pollutants on the surface of the AC will be biodegraded and this enables further adsorption of pollutants to occur with time elapse. This review provides the challenges and perspectives for effective bioregeneration to occur in biological activated carbon(BAC)column. Owing to very few reported works on the bioregeneration rate in BAC column, emphasis is put forward on the recently developed models of bioregeneration kinetic in batch system. All in all, providing potential solutions in increasing the lifespan of AC and the enhancement of bioregeneration rate will definitely overcome the bottlenecks in spent AC bioregeneration.展开更多
We set out to model the oven-drying kinetics of a legume known as pigeon pea, harvested in the Bouenza department in the south-west of the Republic of Congo. The drying kinetics of pigeon peas was carried out in an ov...We set out to model the oven-drying kinetics of a legume known as pigeon pea, harvested in the Bouenza department in the south-west of the Republic of Congo. The drying kinetics of pigeon peas was carried out in an oven under experimental conditions using temperatures of: 50°C, 60°C and 70°C. Seven mathematical models were used to describe pigeon pea drying. During drying, water loss was faster and shorter at 70°C [10.446 g/25 g wet weight (wwb) for 320 min (5.3 h)] compared to 50°C [10.996 g/25 g wet weight (wwb) for 520 min (8.6 h)] and 60°C [10.616 g/25 g wet weight (wwb) for 420 min (7.0 h)] where it was slower and longer. With regard to modeling, and based on the principle of choosing the right model focusing on the high value of R2 and low values of χ2 and RMSE, two models were selected, the Midili model for temperatures of 50°C and 60°C and the Henderson and Pabis model modified for temperature of 70°C showed better results. The R2, χ2 and RMSE values calculated for pigeon pea are 0.99985, 3.93404E-5 and 0.00627;0.9997, 9.245E-5 and 0.00962;0.99996, 1.56332E-5 and 0.00395 respectively at 50°C, 60°C and 70°C.展开更多
Soil mineralized nitrogen(N)is a vital component of soil N supply capacity and an important N source for rice growth.Unveiling N mineralization(Nm)process characteristics and developing a simple and effective approach...Soil mineralized nitrogen(N)is a vital component of soil N supply capacity and an important N source for rice growth.Unveiling N mineralization(Nm)process characteristics and developing a simple and effective approach to evaluate soil Nm are imperative to guide N fertilizer application and enhance its efficiency in various paddy soils with different physicochemical properties.Soil properties are important driving factors contributing to soil Nm differences and must be considered to achieve effective N management.Nevertheless,discrepancies in Nm capacity and other key influencing factors remain uncertain.To address this knowledge gap,this study collected 52 paddy soil samples from Taihu Lake Basin,China,which possess vastly different physicochemical properties.The samples were subjected to a 112-d submerged anaerobic incubation experiment at a constant temperature to obtain the soil Nm characteristics.Reaction kinetics models,including one-pool exponential model,two-pool exponential model,and effective cumulative temperature model,were employed to compare characteristic differences between Nm potential(Nmp)and short-term accumulated mineralized N(Amn)processes in relation to soil physicochemical properties.Based on these relationships,simplified Nmp prediction methods for paddy soils were established.The results revealed that the Nmp values were 145.18,88.64,and 21.03 mg kg-1 in paddy soils with pH<6.50,6.50≤pH≤7.50,and pH>7.50,respectively.Significantly,short-term Amn at day 14 showed a good correlation(P<0.01)with Nmp(R2=0.94),indicating that the prevailing short-term incubation experiment is an acceptable marker for Nmp.Moreover,Nmp correlated well with the ultraviolet absorbance value at 260 nm based on NaHCO3 extraction(Na260),further streamlining the Nmp estimation method.The incorporation of easily obtainable soil properties,including pH,total N(TN),and the ratio of total organic carbon to TN(C/N),alongside Na260 for Nmp evaluation allowed the multiple regression model,Nmp=58.62×TN-23.18×pH+13.08×C/N+86.96×Na260,to achieve a high prediction accuracy(R2=0.95).The reliability of this prediction was further validated with published data of paddy soils in the same region and other rice regions,demonstrating the regional applicability and prospects of this model.This study underscored the roles of soil properties in Nm characteristics and mechanisms and established a site-specific prediction model based on rapid extractions and edaphic properties of paddy soils,paving the way for developing rapid and precise Nm prediction models.展开更多
The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain ra...The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain rate range of 0.001-1 s^-1.The effect of temperature and strain rate on the DRX behavior was discussed.The results indicate that the nucleation and growth of dynamic recrystallized grains easily occur at higher temperatures and lower strain rates.To evaluate the evolution of dynamic recrystallization,the DRX kinetics model was proposed based on the experimental data of true stress-true strain curves.It was revealed that the volume fraction of dynamic recrystallized grains increased with increasing strain in terms of S-curves.A good agreement between the proposed DRX kinetics model and microstructure observation results validates the accuracy of DRX kinetics model for AZ91 D alloy.展开更多
The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a const...The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a constant interfacial area cell with laminar flow were studied,just to elucidate the extraction mechanism and the mass transfer models.The data were analyzed in terms of pseudo-first-order constants.The effects of stirring speed,specific interfacial area and temperature on the extraction rate in both systems were discussed,suggesting that the extractions were mixed bulk phases-interfacial control process.Supported by the experimental data,the corresponding rate equations for Ce(Ⅳ) extraction system and Ce(Ⅳ)-F^- mixture extraction system were obtained.The experimental results indicated the rate-controlling step.The kinetics model was deduced from the rate-controlling step and consistent with the rate equation.展开更多
The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results...The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results, the kinetics analysis was carried out. The results indicate that the precipitation of η phase is the predominant transformation for the alloy during the cooling process after the solution treatment. And the η phase nucleates on dispersoids and at grain boundaries. The amount of η phase decreases with increasing cooling rate, and reduces by 75% as the cooling rate increases from 5 to 50 ℃/min. The kinetics of the precipitation of η phase can be described by the Kamamoto transformation model when the cooling rate is a constant.展开更多
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro...The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.展开更多
Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program redu...Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.展开更多
The flotation kinetics of different size fractions of conventional and nanobubble(NB) flotation were compared to investigate the effect of NBs on the flotation performance of various coal particle sizes. Six flotation...The flotation kinetics of different size fractions of conventional and nanobubble(NB) flotation were compared to investigate the effect of NBs on the flotation performance of various coal particle sizes. Six flotation kinetics models were selected to fit the flotation data, and NBs were observed on a hydrophobic surface under hydrodynamic cavitation by atomic force microscope scanning. Flotation results indicated that the best flotation performance of size fraction at-0.125+0.074 mm can be obtained either in conventional or NB flotation. NBs increase the combustible recovery of almost all the size fractions, but they increase the product ash content of-0.25+0.074 mm and reduce the product ash content of-0.045 mm at the same time. The first-order models can be used to fit the flotation data in conventional and NB flotation, and the classical first-order model is the most suitable one. NBs considerably enhance flotation rate on coarse size fraction(-0.5+0.25 mm) but decrease the flotation rate of the medium size(-0.25+0.074 mm). The improvement of flotation speed on fine coal particles(-0.074 mm) is probably the reason for the improved performance of raw sample flotation.展开更多
1.Colors of chemical reaction engineering models Kinetic models of chemical reactions are a crucial asset for understanding and optimizing chemical processes[1].These models are critical for reactor design,process opt...1.Colors of chemical reaction engineering models Kinetic models of chemical reactions are a crucial asset for understanding and optimizing chemical processes[1].These models are critical for reactor design,process optimization,catalyst design,scale-up,and process control,making them indispensable in the chemical industry.Kinetic models predict the change in temperature and concentration of the relevant species,given an actual concentration and temperature.Reaction predictions are made by integrating the kinetic model with a reactor model,which accounts for external constraints,such as flow,inlet concentration。展开更多
The suspension stage of copper flash smelting was examined by roasting a high arsenic copper smelting feed mixture at 500-900°C for 0-20 s in nitrogen and air atmospheres.The enrichment of copper,lead,zinc,arseni...The suspension stage of copper flash smelting was examined by roasting a high arsenic copper smelting feed mixture at 500-900°C for 0-20 s in nitrogen and air atmospheres.The enrichment of copper,lead,zinc,arsenic,and sulfur in the quenched calcine was determined via chemical analyses.Pyrite and chalcopyrite were the main minerals in the feed mixture,and about 55 wt.%of arsenic was in tennantite.The stability of the feed and the formation of S_(2) and SO_(2)during roasting were surveyed by thermal analysis combined with mass spectrometry.Selected pure impurity sulfides were studied for reference purposes.Results indicated that arsenic was released more easily in inert atmosphere compared to air,in which oxidation products of sulfides captured the released gaseous arsenic.Kinetics analyses showed that the third-order chemical reaction and three-dimensional diffusion models were found as the most suitable mechanism functions of arsenic volatilization in inert and air atmospheres,respectively.展开更多
The construction of intermetallic compounds(IMCs)connection layers with special compositions by adding small amounts of alloying elements has been proven to be an effective strategy for improving the reliability of el...The construction of intermetallic compounds(IMCs)connection layers with special compositions by adding small amounts of alloying elements has been proven to be an effective strategy for improving the reliability of electronic component interconnect.However,the synergistic effect mechanism of multi-component alloy compositions on the growth behavior of IMCs is not clear.Herein,we successfully prepared a new quaternary alloy solder with a composition of Sn-0.7Cu-0.175Pt-0.025Al(wt%)using the high-throughput screening(HTS)method.The results showed that it possesses excellent welding performance with an inhibition rate over 40%on the growth of IMCs layers.For Cu_(6)Sn_(5),the co-doping of Al and Pt not only greatly improves its thermodynamic stability,but also effectively suppresses the phase transition.Meanwhile,the co-doping of Al and Pt also significantly delays the generation time of Kirkendall defects.The substitution sites of Al and Pt in Cu_(6)Sn_(5)have been explored using atomic resolution imaging and advanced data informatics,indicating that Al and Pt preferentially substitute Sn and Cu atoms,respectively,to generate(Cu,Pt)_(6)(Sn,Al)_(5).A one-dimensional(1D)kinetic model of the IMCs layer growth at the Sn solder/Cu substrate interface was derived and validated,and the results showed that the error of the derived mathematical model is less than 5%.Finally,the synergistic mechanism of Al and Pt co-doping on the growth rate of Cu_(6)Sn_(5)was further elucidated.This work provides a feasible route for the design and development of multi-component alloy solders.展开更多
Immobilization of alcalase on a ZIF-L(A@ZIF-L)support was explored for its potential application in producing hydrolysates of proteins extracted from microalgae.The immobilized enzyme was characterized using FTIR,XRD,...Immobilization of alcalase on a ZIF-L(A@ZIF-L)support was explored for its potential application in producing hydrolysates of proteins extracted from microalgae.The immobilized enzyme was characterized using FTIR,XRD,SEM,and TGA,and the maximum adsorption capacity was found to be 672.1±5.5 mg g^(-1)at 40℃.Adsorption equilibrium data indicated that alcalase physically adsorbed onto the ZIF-L,with the isotherm well described by the Freundlich model.The adsorption kinetics aligned best with the pseudo-first order model,suggesting that both film and intraparticle diffusion were significant.The hydrolytic activity of the immobilized A@ZIF-L was initially tested using BSA as a substrate.A diffusion-reaction model was developed and numerically solved to describe the reaction,with results confirming the presence of mass transfer limitations in the early stages of hydrolysis.The stability of the immobilized enzyme was demonstrated by retaining over 90%of its initial activity after being stored at 4℃ for 70 days.Furthermore,the immobilized A@ZIF-L was used to hy-drolyze protein extracts derived from Scenedesmus sp.microalgae.The bioactivity of the resulting protein hy-drolysates was characterized,showing a total phenolic content of 29.1±0.6 mg GAE g^(-1)and a radical scavenging activity of 82.75±2.20%.These findings highlight the potential of Alcalase-based biocatalysts for applications in the food industry.展开更多
Steel–flux reactions involving the high aluminum(0.75–3.85 wt.%Al)low manganese(2.2 wt.%Mn)steel and the 18 wt.%SiO_(2)–18 wt.%Al2O3 mold flux were investigated.The results indicated that the reaction rate increase...Steel–flux reactions involving the high aluminum(0.75–3.85 wt.%Al)low manganese(2.2 wt.%Mn)steel and the 18 wt.%SiO_(2)–18 wt.%Al2O3 mold flux were investigated.The results indicated that the reaction rate increased when the initial aluminum content increased from 0.76 to 3.85 wt.%.Utilizing the two-film theory,a steel–flux reaction kinetic model controlled by mass transfer was established,which considered the influence of the initial composition on the density of liquid steel and flux.The mass transfer of aluminum in the steel phase was the reaction rate-determining step.It was confirmed that the mass transfer coefficient of Al was 1.87×10^(−4).The predicted results of the kinetic model were consistent and reliable with the experimental results.Thermodynamic equilibrium calculation was performed using FactSage 8.2,which was compared with the steel and flux final composition after 30 min.The content of initial aluminum in the liquid steel played a critical role in the SiO_(2)equilibrium content of the mold flux.In addition,the steel–flux reaction between[Al]and(SiO_(2))occurred with the initial SiO_(2)content in the mold flux lower than 3 wt.%.展开更多
The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient...The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient operation scheme,and different morphologies in austenite grain were observed at the target location.The increase in austenite grain size with increasing cooling rate was firstly revealed in steels.The anomalous grain growth theoretically results from the mechanism of peritectic transformation transiting from the diffusional to massive type,and the additional energy storage stimulates the grain boundary migration.A new kinetic model to predict the growth behavior of austenite grain during continuous cooling process was developed,and the energy storage induced by massive type peritectic transformation was novelly taken into account.The parameters in the model were fitted by multiphase field modeling and experimental results.The kinetic model was finally verified by austenite grain size in laboratory test as well as the trial data at different locations in continuously cast bloom.The coarsening behavior of austenite grain during continuous casting was predicted based on the simulated temperature history.It is found that the grain coarsening occurs generally in the mold zone at high temperature for 20Cr steel and then almost levels off in the following process.The austenite finish transformation temperature Tγand primary cooling intensity show great influence on the grain coarsening.As Tγdecreases by 1℃,the austenite grain size decreases by 4μm linearly.However,the variation of Tγagainst heat flux is in a nonlinear relationship,suggesting that low cooling rate is much more harmful for austenite grain coarsening in continuous casting.展开更多
基金This work was supported by the Projects[NO.20154030 and NO.(2017)5655]from the Science and Technology Department of Guizhou Province and the National Natural Science Foundation of China(No.81873020).
文摘In this study,six kinetics models of indomethacin hydrophilic gel patch transdermal in vitro release was established,including zero-level,first-order,Higuchi-level,Ritger-Peppas,Weibull and Hixcon-Crowell dynamic equations.The chemical permeation enhancers,including 3%and 5%Azone,and iontophoresis were used as the control.Transdermal diffusion tests were performed in vitro and indomethacin was quantified by high performance liquid chromatography system.The transdermal parameter of the Higuchi and Weibull dynamic equations,indicated that Fu’s cupping therapy(FCT)could significantly improve Higuchi and Weibull kinetic parameters in vitro transdermal,increased transdermal rate and permeability coefficient,reduced lagging time.Additionally,statistical analysis speculated the skin barrier function could be restored after 46 h treatment.Hence,as a new physical transdermal drug delivery technology,transdermal permeation effects produced by FCT are obvious,which has the characteristics of traditional Chinese medicine and has important clinical application value.
文摘This study was performed in two phases of work.In the first stage,four conventional first-order flotation kinetics models were fitted to the measured recoveries data and the best model were selected.In the second stage,influence of pH,solid concentration,water chemistry and the amount of collector dosage were investigated on kinetics parameters including flotation rate constant and ultimate recovery.The results indicated that that perfectly mixed reactor model and Kelsall model gave the best and the weakest fit to the experimental data,respectively.It was observed that flotation rate constant and ultimate recovery were strongly affected by chemical factors investigated especially water quality.The flotation rate constant decreased with increasing the solids content,while ultimate recovery increased to certain value and thereafter reduced.It was also found that the most values of flotation rate constant and ultimate recovery obtained in dosage of collector are 30 and 40 g/t,respectively.
基金financially supported by the Fundamental Research Project of Yunnan Province,China(Nos.202301AW070020,202201AT070229,202105AC160091,202202AB080018).
文摘The vacuum volatilization kinetics of Pb in In-Pb solder was investigated.The results indicate a significant increase in the vacuum volatilization rates of Pb,25In-75Pb,40In-60Pb,and In with increasing temperatures from 923 to 1123 K,system pressure of 3 Pa and holding time of 30 min.The mass transfer coefficients and apparent activation energies of Pb and its alloys were determined at various temperatures.Additionally,a kinetics model was developed to describe Pb vacuum volatilization in high-temperature melts.It is obtained that the vapor mass transfer is the factor limiting the vacuum volatilization rates of Pb and In-Pb alloys under the above specified conditions.
基金funded by the National Key R&D Program of China(No.2021YFB3702404)the National Natural Science Foundation of China(Nos.52201101 and 52274372)+1 种基金the Major Program Funding of Cisri(No.21T62450ZD)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-013A1 and FRF-TP-22-015A1).
文摘The cold-rolled quenching and partitioning(Q&P)steel with an initial microstructure of deformed ferrite and pearlite was studied.The microstructural evolution under various heating rates of 1.78,50,and 300℃/s was investigated using microstructural characterization and theoretical modeling.At the same time,the characteristics of recrystallization and austenite formation kinetics were decoupled by examining recrystallized ferrite and deformed ferrite as initial conditions.The findings revealed that the austenite formation during continuous heating can be simplified into two stages:(i)the early nucleation-dominated formation stage and(ii)the later grain growth-dominated stage,resulting in the development of a modified two-stage model based on Johnson-Mehl-Avrami-Kolmogorov.Further experiments confirmed that when the austenite volume fraction exceeded approximately 5% at a heating rate of 1.78℃/s,ferrite recrystallization was suppressed.In consequence,a mixed model including recrystallization kinetics was employed to couple the austenite formation occurring in deformed ferrite and recrystallized ferrite,thereby describing the austenite formation kinetics affected by recrystallization.Precise predictions of non-isothermal austenite formation kinetics in cold-rolled Q&P steel were achieved during slow and ultrafast heating processes by integrating the suppression effect into the model for austenite formation.
基金supported by National Natural Science Foundation of China(Basic Science Center Program:61988101)National Natural Science Foundation of China(62394345,62373155,62173147)the Major Science and Technology Project of Xinjiang(No.2022A01006-4).
文摘Industrial ebullated-bed is an important device for promoting the cleaning and upgrading of oil products. The lumped kinetic model is a powerful tool for predicting the product yield of the ebullated-bed residue hydrogenation (EBRH) unit, However, during the long-term operation of the device, there are phenomena such as low frequency of material property analysis leading to limited operating data and diverse operating modes at the same time scale, which poses a huge challenge to building an accurate product yield prediction model. To address these challenges, a data augmentation-based eleven lumped reaction kinetics mechanism model was constructed. This model combines generative adversarial networks, outlier elimination, and L2 norm data filtering to expand the dataset and utilizes kernel principal component analysis-fuzzy C-means for operating condition partitioning. Based on the hydrogenation reaction mechanism, a single and sub operating condition eleven lumped reaction kinetics model of an ebullated-bed residue hydrogenation unit, comprising 55 reaction paths and 110 parameters, was constructed before and after data augmentation. Compared to the single model before data enhancement, the average absolute error of the sub-models under data enhancement division was reduced by 23%. Thus, these findings can help guide the operation and optimization of the production process.
基金financial support from the Universiti Teknologi PETRONAS via YUTP-FRG(0153AA-E48)
文摘The disposal of spent activated carbon(AC) will inevitably create secondary pollution. In overcoming this problem, the spent AC can be regenerated by means of biological approach. Bioregeneration is the phenomenon in which through the action of microorganisms, the adsorbed pollutants on the surface of the AC will be biodegraded and this enables further adsorption of pollutants to occur with time elapse. This review provides the challenges and perspectives for effective bioregeneration to occur in biological activated carbon(BAC)column. Owing to very few reported works on the bioregeneration rate in BAC column, emphasis is put forward on the recently developed models of bioregeneration kinetic in batch system. All in all, providing potential solutions in increasing the lifespan of AC and the enhancement of bioregeneration rate will definitely overcome the bottlenecks in spent AC bioregeneration.
文摘We set out to model the oven-drying kinetics of a legume known as pigeon pea, harvested in the Bouenza department in the south-west of the Republic of Congo. The drying kinetics of pigeon peas was carried out in an oven under experimental conditions using temperatures of: 50°C, 60°C and 70°C. Seven mathematical models were used to describe pigeon pea drying. During drying, water loss was faster and shorter at 70°C [10.446 g/25 g wet weight (wwb) for 320 min (5.3 h)] compared to 50°C [10.996 g/25 g wet weight (wwb) for 520 min (8.6 h)] and 60°C [10.616 g/25 g wet weight (wwb) for 420 min (7.0 h)] where it was slower and longer. With regard to modeling, and based on the principle of choosing the right model focusing on the high value of R2 and low values of χ2 and RMSE, two models were selected, the Midili model for temperatures of 50°C and 60°C and the Henderson and Pabis model modified for temperature of 70°C showed better results. The R2, χ2 and RMSE values calculated for pigeon pea are 0.99985, 3.93404E-5 and 0.00627;0.9997, 9.245E-5 and 0.00962;0.99996, 1.56332E-5 and 0.00395 respectively at 50°C, 60°C and 70°C.
基金supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.Y201956)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2023QNRC001)the National Key Research and Development Program of China(No.2017YFD200104).
文摘Soil mineralized nitrogen(N)is a vital component of soil N supply capacity and an important N source for rice growth.Unveiling N mineralization(Nm)process characteristics and developing a simple and effective approach to evaluate soil Nm are imperative to guide N fertilizer application and enhance its efficiency in various paddy soils with different physicochemical properties.Soil properties are important driving factors contributing to soil Nm differences and must be considered to achieve effective N management.Nevertheless,discrepancies in Nm capacity and other key influencing factors remain uncertain.To address this knowledge gap,this study collected 52 paddy soil samples from Taihu Lake Basin,China,which possess vastly different physicochemical properties.The samples were subjected to a 112-d submerged anaerobic incubation experiment at a constant temperature to obtain the soil Nm characteristics.Reaction kinetics models,including one-pool exponential model,two-pool exponential model,and effective cumulative temperature model,were employed to compare characteristic differences between Nm potential(Nmp)and short-term accumulated mineralized N(Amn)processes in relation to soil physicochemical properties.Based on these relationships,simplified Nmp prediction methods for paddy soils were established.The results revealed that the Nmp values were 145.18,88.64,and 21.03 mg kg-1 in paddy soils with pH<6.50,6.50≤pH≤7.50,and pH>7.50,respectively.Significantly,short-term Amn at day 14 showed a good correlation(P<0.01)with Nmp(R2=0.94),indicating that the prevailing short-term incubation experiment is an acceptable marker for Nmp.Moreover,Nmp correlated well with the ultraviolet absorbance value at 260 nm based on NaHCO3 extraction(Na260),further streamlining the Nmp estimation method.The incorporation of easily obtainable soil properties,including pH,total N(TN),and the ratio of total organic carbon to TN(C/N),alongside Na260 for Nmp evaluation allowed the multiple regression model,Nmp=58.62×TN-23.18×pH+13.08×C/N+86.96×Na260,to achieve a high prediction accuracy(R2=0.95).The reliability of this prediction was further validated with published data of paddy soils in the same region and other rice regions,demonstrating the regional applicability and prospects of this model.This study underscored the roles of soil properties in Nm characteristics and mechanisms and established a site-specific prediction model based on rapid extractions and edaphic properties of paddy soils,paving the way for developing rapid and precise Nm prediction models.
基金Project (51075098) supported by the National Natural Science Foundation of ChinaProject (HIT.NSRIF.2014006) supported by the Fundamental Research Funds for the Central Universities,China
文摘The flow behavior and dynamic recrystallization(DRX) behavior of an as-cast AZ91 D alloy were investigated systematically by applying the isothermal compression tests in temperature range of 220-380 ℃ and strain rate range of 0.001-1 s^-1.The effect of temperature and strain rate on the DRX behavior was discussed.The results indicate that the nucleation and growth of dynamic recrystallized grains easily occur at higher temperatures and lower strain rates.To evaluate the evolution of dynamic recrystallization,the DRX kinetics model was proposed based on the experimental data of true stress-true strain curves.It was revealed that the volume fraction of dynamic recrystallized grains increased with increasing strain in terms of S-curves.A good agreement between the proposed DRX kinetics model and microstructure observation results validates the accuracy of DRX kinetics model for AZ91 D alloy.
基金Project (2012CBA01202) supported by the National Basic Research Program of ChinaProject (51174184) supported by the National Natural Science Foundation of China+2 种基金Project (KGZD-EW-201-1) supported by the Key Research Program of the Chinese Academy of SciencesProject (BK2013030) supported by Science and Technology Plan of Nantong City,ChinaProject (RERU2014016) supported by Open Subject of Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,China
文摘The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a constant interfacial area cell with laminar flow were studied,just to elucidate the extraction mechanism and the mass transfer models.The data were analyzed in terms of pseudo-first-order constants.The effects of stirring speed,specific interfacial area and temperature on the extraction rate in both systems were discussed,suggesting that the extractions were mixed bulk phases-interfacial control process.Supported by the experimental data,the corresponding rate equations for Ce(Ⅳ) extraction system and Ce(Ⅳ)-F^- mixture extraction system were obtained.The experimental results indicated the rate-controlling step.The kinetics model was deduced from the rate-controlling step and consistent with the rate equation.
基金Project(50975053) supported by the National Natural Science Foundation of China
文摘The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results, the kinetics analysis was carried out. The results indicate that the precipitation of η phase is the predominant transformation for the alloy during the cooling process after the solution treatment. And the η phase nucleates on dispersoids and at grain boundaries. The amount of η phase decreases with increasing cooling rate, and reduces by 75% as the cooling rate increases from 5 to 50 ℃/min. The kinetics of the precipitation of η phase can be described by the Kamamoto transformation model when the cooling rate is a constant.
基金financially supported by the National Science Foundation of China(Nos.51974212 and 52274316)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+1 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04)。
文摘The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.
基金financially supported by the National Natural Science Foundation of China (Nos. 51104014 and 51134008)
文摘Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.
基金This work was financially supported by the National Natural Science Foundation of China(No.51704208).
文摘The flotation kinetics of different size fractions of conventional and nanobubble(NB) flotation were compared to investigate the effect of NBs on the flotation performance of various coal particle sizes. Six flotation kinetics models were selected to fit the flotation data, and NBs were observed on a hydrophobic surface under hydrodynamic cavitation by atomic force microscope scanning. Flotation results indicated that the best flotation performance of size fraction at-0.125+0.074 mm can be obtained either in conventional or NB flotation. NBs increase the combustible recovery of almost all the size fractions, but they increase the product ash content of-0.25+0.074 mm and reduce the product ash content of-0.045 mm at the same time. The first-order models can be used to fit the flotation data in conventional and NB flotation, and the classical first-order model is the most suitable one. NBs considerably enhance flotation rate on coarse size fraction(-0.5+0.25 mm) but decrease the flotation rate of the medium size(-0.25+0.074 mm). The improvement of flotation speed on fine coal particles(-0.074 mm) is probably the reason for the improved performance of raw sample flotation.
基金Yannick Ureel and Maarten Dobbelaere acknowledge financial support from the Fund for Scientific Research Flanders(FWO Flanders)respectively through doctoral fellowship grants(1185822N and 1S45522N)The authors acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme/ERC(818607).
文摘1.Colors of chemical reaction engineering models Kinetic models of chemical reactions are a crucial asset for understanding and optimizing chemical processes[1].These models are critical for reactor design,process optimization,catalyst design,scale-up,and process control,making them indispensable in the chemical industry.Kinetic models predict the change in temperature and concentration of the relevant species,given an actual concentration and temperature.Reaction predictions are made by integrating the kinetic model with a reactor model,which accounts for external constraints,such as flow,inlet concentration。
基金support from the Research Foundation for Doctor of Nanyang Institute of Technology,China(No.NGBJ-2022-27)the National Key Research and Development Program of China(No.2023YFC3904002)+3 种基金the National Natural Science Foundation of China(Nos.52064038,52364056)the Science and Technology Research Project of Henan Province,China(No.252102320113)the Key Scientific Research Project Plan of Colleges and Universities in Henan Province,China(No.25B610009)Jiangxi Provincial Natural Science Foundation,China(Nos.20232BCJ22049,20232ACB214009).
文摘The suspension stage of copper flash smelting was examined by roasting a high arsenic copper smelting feed mixture at 500-900°C for 0-20 s in nitrogen and air atmospheres.The enrichment of copper,lead,zinc,arsenic,and sulfur in the quenched calcine was determined via chemical analyses.Pyrite and chalcopyrite were the main minerals in the feed mixture,and about 55 wt.%of arsenic was in tennantite.The stability of the feed and the formation of S_(2) and SO_(2)during roasting were surveyed by thermal analysis combined with mass spectrometry.Selected pure impurity sulfides were studied for reference purposes.Results indicated that arsenic was released more easily in inert atmosphere compared to air,in which oxidation products of sulfides captured the released gaseous arsenic.Kinetics analyses showed that the third-order chemical reaction and three-dimensional diffusion models were found as the most suitable mechanism functions of arsenic volatilization in inert and air atmospheres,respectively.
基金financially supported by the Innovation Team Cultivation Project of Yunnan Province(No.202005AE160016)the Key Research&Development Program of Yunnan Province(No.202103AA080017)Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(No.YNWR-QNBJ2018-044)。
文摘The construction of intermetallic compounds(IMCs)connection layers with special compositions by adding small amounts of alloying elements has been proven to be an effective strategy for improving the reliability of electronic component interconnect.However,the synergistic effect mechanism of multi-component alloy compositions on the growth behavior of IMCs is not clear.Herein,we successfully prepared a new quaternary alloy solder with a composition of Sn-0.7Cu-0.175Pt-0.025Al(wt%)using the high-throughput screening(HTS)method.The results showed that it possesses excellent welding performance with an inhibition rate over 40%on the growth of IMCs layers.For Cu_(6)Sn_(5),the co-doping of Al and Pt not only greatly improves its thermodynamic stability,but also effectively suppresses the phase transition.Meanwhile,the co-doping of Al and Pt also significantly delays the generation time of Kirkendall defects.The substitution sites of Al and Pt in Cu_(6)Sn_(5)have been explored using atomic resolution imaging and advanced data informatics,indicating that Al and Pt preferentially substitute Sn and Cu atoms,respectively,to generate(Cu,Pt)_(6)(Sn,Al)_(5).A one-dimensional(1D)kinetic model of the IMCs layer growth at the Sn solder/Cu substrate interface was derived and validated,and the results showed that the error of the derived mathematical model is less than 5%.Finally,the synergistic mechanism of Al and Pt co-doping on the growth rate of Cu_(6)Sn_(5)was further elucidated.This work provides a feasible route for the design and development of multi-component alloy solders.
文摘Immobilization of alcalase on a ZIF-L(A@ZIF-L)support was explored for its potential application in producing hydrolysates of proteins extracted from microalgae.The immobilized enzyme was characterized using FTIR,XRD,SEM,and TGA,and the maximum adsorption capacity was found to be 672.1±5.5 mg g^(-1)at 40℃.Adsorption equilibrium data indicated that alcalase physically adsorbed onto the ZIF-L,with the isotherm well described by the Freundlich model.The adsorption kinetics aligned best with the pseudo-first order model,suggesting that both film and intraparticle diffusion were significant.The hydrolytic activity of the immobilized A@ZIF-L was initially tested using BSA as a substrate.A diffusion-reaction model was developed and numerically solved to describe the reaction,with results confirming the presence of mass transfer limitations in the early stages of hydrolysis.The stability of the immobilized enzyme was demonstrated by retaining over 90%of its initial activity after being stored at 4℃ for 70 days.Furthermore,the immobilized A@ZIF-L was used to hy-drolyze protein extracts derived from Scenedesmus sp.microalgae.The bioactivity of the resulting protein hy-drolysates was characterized,showing a total phenolic content of 29.1±0.6 mg GAE g^(-1)and a radical scavenging activity of 82.75±2.20%.These findings highlight the potential of Alcalase-based biocatalysts for applications in the food industry.
基金support from the National Key R&D Program of China(No.2023YFB3709900)the National Natural Science Foundation of China(Grant No.U22A20171).
文摘Steel–flux reactions involving the high aluminum(0.75–3.85 wt.%Al)low manganese(2.2 wt.%Mn)steel and the 18 wt.%SiO_(2)–18 wt.%Al2O3 mold flux were investigated.The results indicated that the reaction rate increased when the initial aluminum content increased from 0.76 to 3.85 wt.%.Utilizing the two-film theory,a steel–flux reaction kinetic model controlled by mass transfer was established,which considered the influence of the initial composition on the density of liquid steel and flux.The mass transfer of aluminum in the steel phase was the reaction rate-determining step.It was confirmed that the mass transfer coefficient of Al was 1.87×10^(−4).The predicted results of the kinetic model were consistent and reliable with the experimental results.Thermodynamic equilibrium calculation was performed using FactSage 8.2,which was compared with the steel and flux final composition after 30 min.The content of initial aluminum in the liquid steel played a critical role in the SiO_(2)equilibrium content of the mold flux.In addition,the steel–flux reaction between[Al]and(SiO_(2))occurred with the initial SiO_(2)content in the mold flux lower than 3 wt.%.
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-017A3)National Natural Science Foundation of China(No.51874026).
文摘The continuous growth behavior of austenite grain in 20Cr peritectic steel was analyzed by experiment and theoretical modeling.The peculiar casting experiment with different cooling rates was achieved by multigradient operation scheme,and different morphologies in austenite grain were observed at the target location.The increase in austenite grain size with increasing cooling rate was firstly revealed in steels.The anomalous grain growth theoretically results from the mechanism of peritectic transformation transiting from the diffusional to massive type,and the additional energy storage stimulates the grain boundary migration.A new kinetic model to predict the growth behavior of austenite grain during continuous cooling process was developed,and the energy storage induced by massive type peritectic transformation was novelly taken into account.The parameters in the model were fitted by multiphase field modeling and experimental results.The kinetic model was finally verified by austenite grain size in laboratory test as well as the trial data at different locations in continuously cast bloom.The coarsening behavior of austenite grain during continuous casting was predicted based on the simulated temperature history.It is found that the grain coarsening occurs generally in the mold zone at high temperature for 20Cr steel and then almost levels off in the following process.The austenite finish transformation temperature Tγand primary cooling intensity show great influence on the grain coarsening.As Tγdecreases by 1℃,the austenite grain size decreases by 4μm linearly.However,the variation of Tγagainst heat flux is in a nonlinear relationship,suggesting that low cooling rate is much more harmful for austenite grain coarsening in continuous casting.