Medium-entropy alloys(MEAs)have garnered significant interest due to their unique mechanical prop-erties,but phase instabilities such as the formation of brittle sigma(σ)phase during annealing pose challenges to thei...Medium-entropy alloys(MEAs)have garnered significant interest due to their unique mechanical prop-erties,but phase instabilities such as the formation of brittle sigma(σ)phase during annealing pose challenges to their practical application.This study investigates the microstructural evolution and me-chanical behavior of an 80%cold-rolled Fe_(45)Co_(35)Cr_(10)V_(10)MEA that was isochronally annealed between 100℃ and 900℃ for 300 s and characterized using hardness indentations,in-situ X-ray diffraction,and thermodynamic calculations,with high-resolution electron microscopy detailing microstructural evo-lution at 625℃,675℃,and 725℃.The results show increases in Vickers hardness between 500℃ and 625℃,attributed to the nucleation of a Cr-and V-rich sigma(σ)phase,primarily at the bcc grain boundaries.Beyond 625℃,the hardness decreased due toσ-phase dissolution,recovery of bcc and fcc phases,bcc→fcc phase reversion,and recrystallization of the reverted fcc phase.Scanning-transmission electron microscopy and transmission Kikuchi diffraction revealed a Kurdjumov-Sachs orientation rela-tionship(OR)at 675℃ and a near Nishiyama-Wassermann OR at 725℃ for bcc-fcc interfaces,whereas bcc-σand fcc-σinterfaces showed no dominant OR.In addition toσphase,two types of bcc phase were identified at 625℃.Type 1 bcc initially retained a near-nominal composition and a disordered crystal structure from deformation-induced bcc martensite but gradually became Fe-enriched and Cr-and V-depleted up to 725℃.In contrast,Type 2 bcc phase was Fe-depleted and Co-enriched at 625℃ but dis-appeared at 675℃,coinciding with the onset of bcc→fcc phase reversion.This phase also exhibited B2-like chemical short-range ordering,with alternating FeCo-rich and CrV-rich domains.This study provides insights into the complex phase transformation occurring between 500℃ and 725℃ in a Fe_(45)Co_(35)Cr_(10)V_(10)MEA,which can be leveraged to design alloys with optimized mechanical properties for practical appli-cations.展开更多
Employing experimental equipment and techniques,such as electron backscatter diffraction,transmission Kikuchi diffraction,and transmission electron microscopy,the microstructure,phase structure,and orientation relatio...Employing experimental equipment and techniques,such as electron backscatter diffraction,transmission Kikuchi diffraction,and transmission electron microscopy,the microstructure,phase structure,and orientation relationships of 0.6μm electroplated nickel(Ni)steel following annealing at 580-650℃for 15-30 hours were investigated.A comprehensive analysis was conducted to gain insights into the complex changes in the material's properties due to the annealing process.The results reveal that prolonged annealing led to considerable long-range diffusion of surface Ni atoms into the substrate of the 0.6μm Ni-plated steel.This diffusion process resulted in the formation of an alloy diffusion layer,approximately 4μm in thickness,which altered the material's microstructural characteristics.The extent of diffusion and its effect on the microstructure and structure were meticulously quantified.At the annealing temperature,the diffused Ni in the substrate,acting as an austenite-stabilizing element,expanded the austenite phase region.The alloy layer at this temperature predominantly consisted of the face-centered cubic(FCC)-structuredγ(Fe,Ni)solid solution.Upon cooling to room temperature,the alloy diffusion layer evolved into a dual-layer composite structure.The upper layer mainly comprised the FCC-structuredγ(Fe,Ni)solid solution,interspersed with a minor FCC compound superstructure phase.The lower layer underwent a diffusionless phase transformation during cooling,which led to the formation of the body-centered tetragonal/body-centered cubic-structured martensite.This phase,which is known for its high hardness and numerous variants,maintained the classic Kurdjumov-Sachs orientation relationship with the upper FCC parent phase,and it satisfied the close-packed plane{111}γ//{110}α′and close-packed direction<110>γ//<111>α′.A detailed analysis of the different phases within the alloy layer and their phase transitions was presented,offering an in-depth understanding of the material's characteristics.展开更多
The worn scars on Alloy 690 after the fretting corrosion testing in simulated pressurized water reactor(PWR)secondary water have been comprehensively analyzed by scanning transmission electron microscopy(STEM)and tran...The worn scars on Alloy 690 after the fretting corrosion testing in simulated pressurized water reactor(PWR)secondary water have been comprehensively analyzed by scanning transmission electron microscopy(STEM)and transmission Kikuchi diffraction(TKD).The high-quality characterization results experimentally show that the fretting wear accelerates the corrosion of Alloy 690 in two approaches.The first one is to break the integrity of the oxide scale by introducing cavities at the oxide grain boundaries.The second one is to alter the microstructure of the underneath matrix,forming a nano-grained matrix layer.The increased grain boundary density in this layer can accelerate the consumption of Cr in the near-surface matrix.The loss of oxide scale integrity and the accelerated Cr consumption are believed to contribute to the deteriorated corrosion resistance of Alloy 690 during the fretting corrosion process.展开更多
Using high-resolution transmission Kikuchi diffraction(TKD)and transmission electron microscopy(TEM),we examined the hierarchical clusters that form in situ in the heat-affected zone(HAZ),which are com-monly referred ...Using high-resolution transmission Kikuchi diffraction(TKD)and transmission electron microscopy(TEM),we examined the hierarchical clusters that form in situ in the heat-affected zone(HAZ),which are com-monly referred to as“ghost”structures,of bimodal titanium alloy Ti-5Al-2Sn-2Zr-4Mo-4Cr(wt%,TC17).The ghost structures are enriched with Al elements but poor in Mo and Cr compared to the surroundingβmatrix.TKD results show that the ghost structure in middle-HAZ mainly consists ofα_(L)laths with a high-angle grain boundary,which exhibits the classic Burgers orientation relationship(BOR)with the host matrix,while it encircles theα_(P)grains in far-HAZ.And the ghost structure is evidenced to form via in-complete martensitic transformation.TEM results further confirm that the ghost structure is composed ofαL and tinyβ_(L)laths with BOR,with the former being enriched with Al and poor with Cr and Mo,while the latter is the opposite.Interestingly,twoα_(L)variant clusters with a check-mark morphology are fre-quently observed viewed along[0001]_(αL)//[110]_(βL)directions,which are dominated by the crystallographic and geometrical relationships betweenαandβphases.Based on the microstructural characterization,it is hypothesized that the ghost structure is transformed from the initialα_(P)phase,due to the coupling ef-fect of high thermal stress(which induces the formation of a large number of dislocations)and element diffusion caused by sudden temperature increase and plunge cooling in the HAZ during the welding pro-cess.展开更多
基金provided by the Nano and Material Technology Development Program(RS-2023-00281246)via the National Research Foundation of Korea,Ministry of Science and ICT,KoreaThe JEOL JSM-7001F,JEOL ARM 200F,and FEI Helios G3 CX FIB-SEM were funded by the Australian Research Council-Linkage,Infrastructure,Equipment and Facilities GrantsNos.LE0882613,LE120100104 andLE160100063,respectivelyThe Oxford Instruments 80 mm2 X-Max EDS detector and the JEOL JEM F200 were funded via the 2012 UOW Major Equipment Grant and 2019 UOW Equipment Replacement Grant schemes,respectively.
文摘Medium-entropy alloys(MEAs)have garnered significant interest due to their unique mechanical prop-erties,but phase instabilities such as the formation of brittle sigma(σ)phase during annealing pose challenges to their practical application.This study investigates the microstructural evolution and me-chanical behavior of an 80%cold-rolled Fe_(45)Co_(35)Cr_(10)V_(10)MEA that was isochronally annealed between 100℃ and 900℃ for 300 s and characterized using hardness indentations,in-situ X-ray diffraction,and thermodynamic calculations,with high-resolution electron microscopy detailing microstructural evo-lution at 625℃,675℃,and 725℃.The results show increases in Vickers hardness between 500℃ and 625℃,attributed to the nucleation of a Cr-and V-rich sigma(σ)phase,primarily at the bcc grain boundaries.Beyond 625℃,the hardness decreased due toσ-phase dissolution,recovery of bcc and fcc phases,bcc→fcc phase reversion,and recrystallization of the reverted fcc phase.Scanning-transmission electron microscopy and transmission Kikuchi diffraction revealed a Kurdjumov-Sachs orientation rela-tionship(OR)at 675℃ and a near Nishiyama-Wassermann OR at 725℃ for bcc-fcc interfaces,whereas bcc-σand fcc-σinterfaces showed no dominant OR.In addition toσphase,two types of bcc phase were identified at 625℃.Type 1 bcc initially retained a near-nominal composition and a disordered crystal structure from deformation-induced bcc martensite but gradually became Fe-enriched and Cr-and V-depleted up to 725℃.In contrast,Type 2 bcc phase was Fe-depleted and Co-enriched at 625℃ but dis-appeared at 675℃,coinciding with the onset of bcc→fcc phase reversion.This phase also exhibited B2-like chemical short-range ordering,with alternating FeCo-rich and CrV-rich domains.This study provides insights into the complex phase transformation occurring between 500℃ and 725℃ in a Fe_(45)Co_(35)Cr_(10)V_(10)MEA,which can be leveraged to design alloys with optimized mechanical properties for practical appli-cations.
文摘Employing experimental equipment and techniques,such as electron backscatter diffraction,transmission Kikuchi diffraction,and transmission electron microscopy,the microstructure,phase structure,and orientation relationships of 0.6μm electroplated nickel(Ni)steel following annealing at 580-650℃for 15-30 hours were investigated.A comprehensive analysis was conducted to gain insights into the complex changes in the material's properties due to the annealing process.The results reveal that prolonged annealing led to considerable long-range diffusion of surface Ni atoms into the substrate of the 0.6μm Ni-plated steel.This diffusion process resulted in the formation of an alloy diffusion layer,approximately 4μm in thickness,which altered the material's microstructural characteristics.The extent of diffusion and its effect on the microstructure and structure were meticulously quantified.At the annealing temperature,the diffused Ni in the substrate,acting as an austenite-stabilizing element,expanded the austenite phase region.The alloy layer at this temperature predominantly consisted of the face-centered cubic(FCC)-structuredγ(Fe,Ni)solid solution.Upon cooling to room temperature,the alloy diffusion layer evolved into a dual-layer composite structure.The upper layer mainly comprised the FCC-structuredγ(Fe,Ni)solid solution,interspersed with a minor FCC compound superstructure phase.The lower layer underwent a diffusionless phase transformation during cooling,which led to the formation of the body-centered tetragonal/body-centered cubic-structured martensite.This phase,which is known for its high hardness and numerous variants,maintained the classic Kurdjumov-Sachs orientation relationship with the upper FCC parent phase,and it satisfied the close-packed plane{111}γ//{110}α′and close-packed direction<110>γ//<111>α′.A detailed analysis of the different phases within the alloy layer and their phase transitions was presented,offering an in-depth understanding of the material's characteristics.
基金Shanghai Pujiang Program(No.21PJ1406400)is acknowledged for funding this research.
文摘The worn scars on Alloy 690 after the fretting corrosion testing in simulated pressurized water reactor(PWR)secondary water have been comprehensively analyzed by scanning transmission electron microscopy(STEM)and transmission Kikuchi diffraction(TKD).The high-quality characterization results experimentally show that the fretting wear accelerates the corrosion of Alloy 690 in two approaches.The first one is to break the integrity of the oxide scale by introducing cavities at the oxide grain boundaries.The second one is to alter the microstructure of the underneath matrix,forming a nano-grained matrix layer.The increased grain boundary density in this layer can accelerate the consumption of Cr in the near-surface matrix.The loss of oxide scale integrity and the accelerated Cr consumption are believed to contribute to the deteriorated corrosion resistance of Alloy 690 during the fretting corrosion process.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.51871222 and 52171021)Japan Soci-ety for the Promotion of Science(No.P20737)Natural Science Foundation of Liaoning Province(No.2023-MS-018).
文摘Using high-resolution transmission Kikuchi diffraction(TKD)and transmission electron microscopy(TEM),we examined the hierarchical clusters that form in situ in the heat-affected zone(HAZ),which are com-monly referred to as“ghost”structures,of bimodal titanium alloy Ti-5Al-2Sn-2Zr-4Mo-4Cr(wt%,TC17).The ghost structures are enriched with Al elements but poor in Mo and Cr compared to the surroundingβmatrix.TKD results show that the ghost structure in middle-HAZ mainly consists ofα_(L)laths with a high-angle grain boundary,which exhibits the classic Burgers orientation relationship(BOR)with the host matrix,while it encircles theα_(P)grains in far-HAZ.And the ghost structure is evidenced to form via in-complete martensitic transformation.TEM results further confirm that the ghost structure is composed ofαL and tinyβ_(L)laths with BOR,with the former being enriched with Al and poor with Cr and Mo,while the latter is the opposite.Interestingly,twoα_(L)variant clusters with a check-mark morphology are fre-quently observed viewed along[0001]_(αL)//[110]_(βL)directions,which are dominated by the crystallographic and geometrical relationships betweenαandβphases.Based on the microstructural characterization,it is hypothesized that the ghost structure is transformed from the initialα_(P)phase,due to the coupling ef-fect of high thermal stress(which induces the formation of a large number of dislocations)and element diffusion caused by sudden temperature increase and plunge cooling in the HAZ during the welding pro-cess.