期刊文献+
共找到830篇文章
< 1 2 42 >
每页显示 20 50 100
Numerical Simulation of the Atomization Process for Blast Furnace Slag Granulation
1
作者 Li-Li Wang Hong-Xing Qin Nan Dong 《Fluid Dynamics & Materials Processing》 2025年第6期1489-1503,共15页
The so-called close-coupled gas atomization process involves melting a metal and using a high-pressure gas jet positioned close to the melt stream to rapidly break it into fine,spherical powder particles.This techniqu... The so-called close-coupled gas atomization process involves melting a metal and using a high-pressure gas jet positioned close to the melt stream to rapidly break it into fine,spherical powder particles.This technique,adapted for blast furnace slag granulation using a circular seam nozzle,typically aims to produce solid slag particles sized 30–140μm,thereby allowing the utilization of slag as a resource.This study explores the atomization dynamics of liquid blast furnace slag,focusing on the effects of atomization pressure.Primary atomization is simulated using a combination of the Volume of Fluid(VOF)method and the Shear Stress Transport k-ωturbulence model,while secondary atomization is analyzed through the Discrete Phase Model(DPM).The results reveal that primary atomization progresses in three stages:the slag column transforms into an umbrella-shaped liquid film,whose leading edge fragments into particles while forming a cavity-like structure,which is eventually torn into ligaments.This primary deformation is driven by the interplay of airflow velocity in the recirculation zone and the guide tube outlet pressure(Fp).Increasing the atomization pressure amplifies airflow velocity,recirculation zone size,expansion and shock waves,though the guide tube outlet pressure variations remain irregular.Notably,at 4.5 MPa,the primary deformation is most pronounced.Secondary atomization yields finer slag particles as a result of more vigorous primary atomization.For this pressure,the smallest average particle size and the highest yield of particles within the target range(30–140μm)are achieved. 展开更多
关键词 Blast furnace slag granulation close-coupled gas atomization atomization pressure atomization process
在线阅读 下载PDF
Characteristics and Microstructure of a Hypereutectic Al-Si Alloy Powder by Ultrasonic Gas Atomization Process 被引量:3
2
作者 Jun SHEN Zhuangde XIE Bide ZHOU and Qingchun LI School of Materials Science and Engineering, Harbin institute of Technology, Harbin 150O01. China Zhijun SU and Hongsheng LE Shanghai HitaChi Electrical Appliance Co. Ltd, Shanghai 201206, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期79-80,共2页
A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the all... A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the alloy was very fine and its microstructure was mainly consisted of Si crystals plus intermetallic compound A19FeSi3, which were.very fine and uniformly distributed. 展开更多
关键词 FESI Characteristics and Microstructure of a Hypereutectic Al-Si Alloy Powder by Ultrasonic Gas atomization process AL
在线阅读 下载PDF
High temperature deformation behavior and processing map of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders 被引量:2
3
作者 Ying Bao Dong-ye Yang +4 位作者 Na Liu Guo-qing Zhang Zhou Li Fu-yang Cao Jian-fei Sun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第4期435-441,共7页
The hot compressive deformation behavior of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders was systematically investigated and the processing map was obtained in the temperat... The hot compressive deformation behavior of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders was systematically investigated and the processing map was obtained in the temperature range of 1323-1473 Kand strain rate range of 0.001-0.5s^(-1).The calculated activation energy in the above variational ranges of temperature and strain rate possesses a low activation energy value of approximately 365.6kJ/mol based on the constitutive relationship models developed with the Arrhenius-type constitutive model respectively considering the strain rate and deformation temperature.The hot working flow behavior during the deformation process was analyzed combined with the microstructural evolution.Meanwhile,the processing maps during the deformation process were established based on the dynamic material model and Prasad instability criterion under different deformation conditions.Finally,the optimal hot processing window of this alloy corresponding to the wide temperature range of 1353-1453 Kand the low strain rate of 0.001-0.1s^(-1) was obtained. 展开更多
关键词 Hot compressive deformation TiAl alloy Constitutive equation processing map Gas atomization Hot isostatic pressing
原文传递
Preparation of tube blanks by atomization deposition process
4
作者 Xiong Baiqing(熊柏青) Zhang Yongan(张永安) +1 位作者 Lin Yaojun(林耀军) Zhang Shaoming(张少明) Shi Likai(石力开) 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第3期472-476,共5页
By using the method of mathematical calculation combined with experiment, the technological conditions of atomization deposition process for making tube blanks with even thickness were studied. The results show that i... By using the method of mathematical calculation combined with experiment, the technological conditions of atomization deposition process for making tube blanks with even thickness were studied. The results show that in the case of the substrate rotating and translating simultaneously, when the ratio of the rotation frequency to the translational velocity is very large, and the other deposition conditions are suitable, tube blanks with even thickness and high density can be produced, and the actual deposition efficiency will be highest. 展开更多
关键词 atomization deposition process TUBE BLANKS ROTATION frequency TRANSLATIONAL VELOCITY Document code:A
在线阅读 下载PDF
炭专业文献中的关键词(Keywords for carbons)——制备和过程(Preparation and processing)
5
作者 李峰 王茂章 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2008年第1期85-85,共1页
关键词 keywords for carbons Preparation and processing
在线阅读 下载PDF
炭专业文献中的关键词(Keywords for carbons)—制备和过程(Preparation and processing)
6
作者 李峰 王茂章 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2006年第1期42-42,共1页
关键词 keywords for carbons Preparation and processing
在线阅读 下载PDF
Effects of different nozzle materials on atomization results via CFD simulation 被引量:5
7
作者 Xiangyu Li Jianjun Du +2 位作者 Licheng Wang Jiangli Fan Xiaojun Peng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第2期362-368,共7页
Spray drying,as a crucial operation in industrial production,converts solution to fine particle.The spray moiety directly affects the final particle morphology,size and distribution.Compared with the experimental meth... Spray drying,as a crucial operation in industrial production,converts solution to fine particle.The spray moiety directly affects the final particle morphology,size and distribution.Compared with the experimental method,computational fluid dynamics(CFD)modeling is a powerful and convenient tool for simulating the spray process.Based on the verified CFD model,different materials of atomizer were simulated to investigate the effect on droplet size and distribution in this work.The modeling result proved that the droplet size and distribution were influenced by the resistance coefficient of materials,wherein the Reynolds number could change the effect of roughness along with the change of mass flow rate on spray process.The results in this work have implication for controlling droplet size through developing new spray nozzle with different materials or surface coating. 展开更多
关键词 CFD modeling Spray process atomIZER MATERIALS DROPLET SIZE SIZE distribution
在线阅读 下载PDF
Kravchenko atomic transforms in digital signal processing 被引量:2
8
作者 V.F.Kravchenko D.V.Churikov 《Journal of Measurement Science and Instrumentation》 CAS 2012年第3期228-234,共7页
The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of a... The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of atomic functions (AF) are presented. The numerical experiments of digital time series processing and physical analysis of the results confirm the efficiency of the proposed transforms. 展开更多
关键词 atomic functions(AF) Fourier series space-time transforms digital signal processing(DSP)
在线阅读 下载PDF
Preparation of optimal entropy squeezing state of atomic qubit inside the cavity via two-photon process and manipulation of atomic qubit outside the cavity 被引量:1
9
作者 周并举 彭朝晖 +2 位作者 贾春霞 姜春蕾 刘小娟 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期50-54,共5页
Considering two atomic qubits initially in Bell states, we send one qubit into a vacuum cavity with two-photon resonance and leave the other one outside. Using quantum information entropy squeezing theory, the time ev... Considering two atomic qubits initially in Bell states, we send one qubit into a vacuum cavity with two-photon resonance and leave the other one outside. Using quantum information entropy squeezing theory, the time evolutions of the entropy squeezing factor of the atomic qubit inside the cavity are discussed for two cases, i.e., before and after rotation and measurement of the atomic qubit outside the cavity. It is shown that the atomic qubit inside the cavity has no entropy squeezing phenomenon and is always in a decoherent state before the operating atomic qubit outside the cavity. However,the periodical entropy squeezing phenomenon emerges and the optimal entropy squeezing state can be prepared for the atomic qubit inside the cavity by adjusting the rotation angle, choosing the interaction time between the atomic qubit and the cavity, controlling the probability amplitudes of subsystem states. Its physical essence is cutting the entanglement between the atomic qubit and its environment, causing the atomic qubit inside the cavity to change from the initial decoherent state into maximum coherent superposition state, which is a possible way of recovering the coherence of a single atomic qubit in the noise environment. 展开更多
关键词 atomic qubit rotation operation optimal entropy squeezing state two-photon process
原文传递
Optical PAM-4/PAM-8 generation via dual-Raman process in Rydberg atoms 被引量:1
10
作者 宋晓云 尹政 +4 位作者 任冠宇 韩明志 杨艾红 祁义红 彭延东 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期383-388,共6页
A scheme of optical four-level pulse amplitude modulation(PAM-4) is proposed based on dual-Raman process in Rydberg atoms. A probe field counter-propagates with a dual-Raman field which drives the ground and the excit... A scheme of optical four-level pulse amplitude modulation(PAM-4) is proposed based on dual-Raman process in Rydberg atoms. A probe field counter-propagates with a dual-Raman field which drives the ground and the excited states transition, respectively, and the Rydberg transition is driven by a microwave(MW) field. A gain peak appears in the probe transmission and is sensitive to the MW field strength. Optical PAM-4 can be achieved by encoding an MW signal and decoding the magnitude of a probe signal. Simulation results show that the differential nonlinearity and the integral nonlinearity of the proposed scheme can be reduced by 5 times and 6 times, respectively, compared with the counterparts of previous scheme, and the ratio of level separation mismatch is close to the ideal value 1. Moreover, the scheme is extended to optical PAM-8 signal, which may further improve the spectral efficiency. 展开更多
关键词 Rydberg atoms PAM-4/PAM-8 dual-Raman process
原文传递
Spray Atomized and Codeposited Al-Li Based Metal-matrix Composites Processing and Properties 被引量:1
11
作者 E. Raskin S. Nayim M.Polak and J.Baram(Materials Engineering Dept., Ben-Gurion University of the Negev, Beer-Sheva, Israel )A.N.Sembira(Nuclear Research Center, Negev, Beer-Sheva, Israel)(To whom correspondence should be addressed) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第5期329-339,共11页
In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate wh... In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate where they impact and collect as rapidly solidified splats. Relatively high rates of solidification are achieved as a result of the thinness of the splats and the rapid heat extraction during flight and upon impacting with the substrate. The processing method uses codeposition of the metallic semi-solidified droplets (metallic matrix) with the injected reinforcement ceramic particles. In the present paper, the microstructures, mechanical properties, interfacial properties, thermal stability and aging behaviour of spray atomized and codeposited Al-Li-X MMC's (injected X=SiC, Al2O3) are reported and correlated to the processing conditions. 展开更多
关键词 LI Al Spray atomized and Codeposited Al-Li Based Metal-matrix Composites processing and Properties
在线阅读 下载PDF
Computational Modelling of the Hydride Generation Reaction in a Tubular Reactor and Atomization in a Quartz Cell Atomizer 被引量:1
12
作者 Wameath S. Abdul-Majeed William B. Zimmerman 《Journal of Analytical Sciences, Methods and Instrumentation》 2012年第3期126-139,共14页
In this study, we present a model whereby the centre of the atomization channel is shown to be the optimal location for the spectrometric data acquisition in a quartz cell atomizer. The study aims to explore the hydri... In this study, we present a model whereby the centre of the atomization channel is shown to be the optimal location for the spectrometric data acquisition in a quartz cell atomizer. The study aims to explore the hydride generation technique which is normally coupled with efficient thermal source to apply determination of heavy metals in water samples via spectrometric analysis. The arsenic hydride generation process and the atomization of the generated hydride in a quartz cell atomizer were studied analytically as model case studies. The hydride generation (HG) process was analyzed by adopting two hypotheses, the nascent hydrogen and formation of intermediate hydroboron species, where the results based on the second hypothesis are found to be more realistic for design purposes. Moreover, the release of the generated hydride from the liquid phase and their transport to the gas phase is simulated in a helical tubular section, in which the actual tubular section length required for separation is deduced. The analytical results have been verified experimentally by measuring the signal intensity for the free arsenic atoms against several reaction tube lengths, in which increasing the tubular section length from 12 cm to 100 cm results in signal amelioration by no more than 6.6%. Furthermore, the atomization of the hydride and the distribution of the generated free atoms are deduced in two configurations of tubular quartz atomizers. The results obtained from both studied cases illustrate that a high concentration of the free analyte atoms is generated in the first part of the atomization channel, saturates to a maximum in a position at the atomizer centre, and dissipates at the inside wall of the tubular atomizer before reaching the atomizer outlet edge, which is found to be in total agreement with the current understanding of atomization mechanism in tubular atomizer and emphasizes the fact that the centre of the quartz cell atomizer is the best location for the spectrometric data acquisition. 展开更多
关键词 HYDRIDE Generation process TUBULAR Reactor QUARTZ CELL atomIZER Emission Spectroscopy
暂未订购
Experiment Results about the Relationship of Edge Turbulence and Atomic Processes in the HT-7 Tokamak
13
作者 宋梅 万宝年 徐国盛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第6期3097-3101,共5页
Using a reciprocating Langmuir probe system, the boundary plasma behaviors were investigated before and after lithium/silicon coating. Accompanying the effective reduction of impurity radiation, strong shears of radia... Using a reciprocating Langmuir probe system, the boundary plasma behaviors were investigated before and after lithium/silicon coating. Accompanying the effective reduction of impurity radiation, strong shears of radial electric field and poloidal velocity came into being and the turbulence suppression and de-correlation were observed in the edge region of coated wall plasma. All these led to the reduction of the edge transport and improvement of plasma confinement. In the central line averaged density scanning experiments, an enhanced shear of the radial electric field was observed in the edge plasma with the increase of the density, which may account for the enhancement of the transport barrier and the improvement of particle confinement. The results suggest a close link between wall conditions and boundary plasma. In addition to the relationship, ^~Te/Te - ^~n/ne and θ-^~Te^~ne- π, had been observed in the plasma edge region, which indicates the important role of the ionization and radiation in turbulence driving. 展开更多
关键词 TURBULENCE CONFINEMENT atomic processes TOKAMAK
在线阅读 下载PDF
Entropy squeezing of a moving atom and control of noise of the quantum mechanical channel via the two-photon process
14
作者 周并举 刘小娟 +1 位作者 周清平 刘明伟 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第2期420-428,共9页
Based on the quantum information theory, we have investigated the entropy squeezing of a moving two-level atom interacting with the coherent field via the quantum mechanical channel of the two-photon process. The resu... Based on the quantum information theory, we have investigated the entropy squeezing of a moving two-level atom interacting with the coherent field via the quantum mechanical channel of the two-photon process. The results are compared with those of atomic squeezing based on the Heisenberg uncertainty relation. The influences of the atomic motion and field-mode structure parameter on the atomic entropy squeezing and on the control of noise of the quantum mechanical channel via the two-photon process are examined. Our results show that the squeezed period, duration of optimal entropy squeezing of a two-level atom and the noise of the quantum mechanical channel can be controlled by appropriately choosing the atomic motion and the field-mode structure parameter, respectively. The quantum mechanical channel of two-photon process is an ideal channel for quantum information (atomic quantum state) transmission. Quantum information entropy is a remarkably accurate measure of the atomic squeezing. 展开更多
关键词 entropy squeezing atomic motion and field-mode structure quantum mechanical channel two-photon process
原文传递
Numerical simulation of effect of various parameters on atomization in an annular slit atomizer
15
作者 Yi Wang Yi-chen Dang +4 位作者 Xiao-qing Chen Bao Wang Zhong-qiu Liu Jian-an Zhou Chang-yong Chen 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第6期1128-1141,共14页
As the width-thickness ratio of the discrete nozzle atomizer’s discrete hole greatly influences the loss of atomizing gas flow rate,the discrete nozzle atomizer was transformed into an annular slit atomizer with the ... As the width-thickness ratio of the discrete nozzle atomizer’s discrete hole greatly influences the loss of atomizing gas flow rate,the discrete nozzle atomizer was transformed into an annular slit atomizer with the same total nozzle outlet area.A numerical simulation study on the effect of various parameters on the atomization in the annular slit atomizer was carried out by coupling both the large eddy simulation(LES)and volume of fluid(VOF)model,which is based on the applicability of LES in capturing the breakup behavior of transient liquid droplets and the advantage of VOF method in directly capturing the phase interface.The simulation results showed that the increase in the atomization pressure makes the gas gain higher momentum,while the increase in the nozzle intersection angle decreases the distance between the nozzle exit and the computational domain axis.The increase in these two variables results in enhancing the gas-liquid interaction in the primary atomization zone and the formation of more aluminum droplets simultaneously.It is considered that the atomization effect becomes better when atomization pressure is 2.5 MPa,and the nozzle intersection angle is 60°.Industrial tests showed that the aluminum powder prepared by the optimized annular slit atomizer has a finer mean particle size and a higher yield of fine powder.The numerical simulation results agree well with the industrial test data of the powder particle size. 展开更多
关键词 Annular slit atomizer Volume of fluid model atomization process atomization pressure Nozzle intersection angle atomization effect
原文传递
Joint Operation of Atomic Force Microscope and Advanced Laser Confocal Microscope for Observing Surface Processes in a Protein Crystal
16
作者 Shin-ichiro Yanagiya Nobuo Goto 《Journal of Surface Engineered Materials and Advanced Technology》 2012年第3期210-214,共5页
We demonstrated the insitu observation of a moving atomic force microscope (AFM) cantilever using a laser confocal microscope combined with a differential interference microscope (LCM-DIM). The AFM cantilever scanned ... We demonstrated the insitu observation of a moving atomic force microscope (AFM) cantilever using a laser confocal microscope combined with a differential interference microscope (LCM-DIM). The AFM cantilever scanned or indented the {110} surface of a hen egg-white lysozyme crystal in a supersaturated solution. Using a soft cantilever, we could observe the step growth with high time resolution by LCM-DIM and perform quantitative measurements of the step height by AFM simultaneously. In addition, a hard cantilever was used with LCM-DIM to observe the dynamics of crystal surface scratching and indentation. In the supersaturated solution, the small steps generated from the scratched line aggregated to macro steps, and subsequently flattened the surface. 展开更多
关键词 Laser CONFOCAL MICROSCOPY atomIC FORCE MICROSCOPY Surface process PROTEIN CRYSTAL
暂未订购
Coordination of distinctive pesticide adjuvants and atomization nozzles on droplet spectrum evolution for spatial drift reduction
17
作者 Shidong Xue Jingkun Han +3 位作者 Xi Xi Zhong Lan Rongfu Wen Xuehu Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期250-262,共13页
Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants a... Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants and nozzles on droplet spectrum remain unclear.Here,we established the relationship between droplet spectrum evolution and liquid atomization by investigating the typical characteristics of droplet diameter distribution near the nozzle.Based on this,the regulation mechanisms of distinctive pesticide adjuvants on droplet spectrum were clarified,and the corresponding drift reduction performances were quantitively evaluated by wind tunnel experiments.It shows that the droplet diameter firstly shifts to the smaller due to the liquid sheet breakup and then prefers to increase caused by droplet interactions.Reducing the surface tension of sprayed liquid facilitates the uniform liquid breakup and increasing the viscosity inhibits the liquid deformation,which prolong the atomization process and effectively improve the droplet spectrum.As a result,the drift losses of flat-fan and hollow cone nozzles are reduced by about 50%after adding organosilicon and vegetable oil adjuvants.By contrast,the air induction nozzle shows a superior anti-drift ability,regardless of distinctive adjuvants.Our findings provide insights into rational adjuvant design and nozzle selection in the field application. 展开更多
关键词 Pesticide drift Spray droplets Particle size distribution Spray atomization Transport processes ADJUVANTS
在线阅读 下载PDF
Ab Initio Study of Single-and Double-Electron Capture Processes in Collisions of He^(2+) Ions and Ne Atoms
18
作者 Xiao-Xia Wang Kun Wang +6 位作者 Yi-Geng Peng Chun-Hua Liu Ling Liu Yong Wu Heinz-Peter Liebermann Robert JBuenker Yi-Zhi Qu 《Chinese Physics Letters》 SCIE CAS CSCD 2021年第11期30-36,共7页
The single-and double-electron capture(SEC, DEC) processes of He^(2+) ions colliding with Ne atoms are studied by utilizing the full quantum-mechanical molecular-orbital close-coupling method. Total and state-selectiv... The single-and double-electron capture(SEC, DEC) processes of He^(2+) ions colliding with Ne atoms are studied by utilizing the full quantum-mechanical molecular-orbital close-coupling method. Total and state-selective SEC and DEC cross sections are presented in the energy region of 2 eV/u to 20 keV/u. Results show that the dominant reaction channel is Ne^(+)(2s2p^(6) ^(2)S) + He^(+)(1s) in the considered energy region due to strong couplings with the initial state Ne(2s^(2)2p^(6)^(1)S) + He^(2+) around the internuclear distance of 4.6 a.u. In our calculations, the SEC cross sections decrease initially and then increase whereby, the minimum point is around 0.38 keV/u with the increase of collision energies. After considering the effects of the electron translation factor(ETF), the SEC cross sections are increased by 15%–25% nearby the energy region of keV/u and agree better with the available results. The DEC cross sections are smaller than those of SEC because of the larger energy gaps and no strong couplings with the initial state. Due to the Demkov-type couplings between DEC channel Ne^(2+)(2s^(2)2p^(4)^(1)S) + He(1s^(2)) and the dominating SEC channel Ne^(+)(2s2p^(6) ^(2)S) + He^(+)(1s), the DEC cross sections increase with increasing impact energies. Good consistency can also be found between the present DEC and the experimental measurements in the overlapping energy region. 展开更多
关键词 SEC DEC Ab Initio Study of Single-and Double-Electron Capture processes in Collisions of He Ions and Ne atoms
原文传递
Role of XUV Photons in Atomic High-Order Above-Threshold Ionization Processes in IR+XUV Two-Color Laser Fields
19
作者 张奎 刘敏 +4 位作者 王兵兵 郭迎春 严宗朝 陈京 柳晓军 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期15-19,共5页
We investigate the above-threshold ionization of an atom in a combined infrared (IR) and extreme ultraviolet (XUV) two-color laser field and focus on the role of XUV field in the high-order above-threshold ionizat... We investigate the above-threshold ionization of an atom in a combined infrared (IR) and extreme ultraviolet (XUV) two-color laser field and focus on the role of XUV field in the high-order above-threshold ionization (HATI) process. It is demonstrated that, in stark contrast to previous studies, the XUV laser may play a significant role in atomic HATI process, and in particular, the XUV laser can accelerate the ionized electron in a quantized way during the collision between the electron and its parent ion. This process cannot be explained by the elassical three-step model Our results indicate that the previously well-established concept that HATI is an elastic recollision process is broken down. 展开更多
关键词 ATI Role of XUV Photons in atomic High-Order Above-Threshold Ionization processes in IR+XUV Two-Color Laser Fields IR
原文传递
Research Status of Short Process Forming Techniques for Brazing and Soldering Materials
20
作者 Dong Bowen Shi Guangyuan +4 位作者 Zhong Sujuan Dong Xian Cheng Yafang Long Weimin Zhang Guanxing 《稀有金属材料与工程》 北大核心 2025年第2期377-384,共8页
Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This r... Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This review mainly summarized the research reports on short process forming techniques for brazing and soldering materials.Firstly,the traditional process and its shortcomings were presented.Secondly,the latest research of short process forming technologies,such as continuous casting technique,atomization powder technique,solder ball forming technique,and rapid solidification technique,was summarized,and the traditional forming performance of several brazing and soldering materials was introduced.Finally,the current restrictions and research trends of short process forming technique for brazing and solder materials were put forward,providing theoretical guidance and reference for related research and technique development in brazing and soldering field. 展开更多
关键词 short process forming technique continuous casting atomization powder soldering ball rapid solidification amorphous filler metals
原文传递
上一页 1 2 42 下一页 到第
使用帮助 返回顶部