期刊文献+
共找到339篇文章
< 1 2 17 >
每页显示 20 50 100
Keypoint全功能肌电诱发电位故障维修1例
1
作者 晋虎 《医疗卫生装备》 CAS 2012年第8期145-146,共2页
Keypoint全功能肌电诱发电位是维迪公司的一款性能稳定可靠、使用便捷的台式肌电图,在使用中轻轻点击快速完成数据采集即可将患者从痛苦的检查中解放出来。Keypoint具有保留所有原始的波形提供给医师在报告时阅读分析参考诊断。
关键词 keypoint 肌电诱发电位 全功能 故障维修 数据采集 肌电图
暂未订购
基于Keypoint RCNN改进模型的物体抓取检测算法 被引量:14
2
作者 夏浩宇 索双富 +2 位作者 王洋 安琪 张妙恬 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第4期236-246,共11页
机器人抓取在工业中的应用有两个难点:如何准确地检测可抓取物体,以及如何从检测出的多个物体中选择最优抓取目标。本文在Keypoint RCNN模型中引入同方差不确定性学习各损失的权重,并在特征提取器中加入注意力模块,构成了Keypoint RCNN... 机器人抓取在工业中的应用有两个难点:如何准确地检测可抓取物体,以及如何从检测出的多个物体中选择最优抓取目标。本文在Keypoint RCNN模型中引入同方差不确定性学习各损失的权重,并在特征提取器中加入注意力模块,构成了Keypoint RCNN改进模型。基于改进模型提出了两阶段物体抓取检测算法,第一阶段用模型预测物体掩码和关键点,第二阶段用掩码和关键点计算物体的抓取描述和重合度,重合度表示抓取时的碰撞程度,根据重合度可以从多个可抓取物体中选择最优抓取目标。对照实验证明,相较原模型,Keypoint RCNN改进模型在目标检测、实例分割、关键点检测上的性能均有提高,在自建数据集上的平均精度分别为85.15%、79.66%、86.63%,机器人抓取实验证明抓取检测算法能够准确计算物体的抓取描述、选择最优抓取,引导机器人无碰撞地抓取目标。 展开更多
关键词 抓取检测 keypoint RCNN改进模型 损失权重 注意力模块 抓取描述 重合度 最优抓取
原文传递
Keypoint Description Using Statistical Descriptor with Similarity-Invariant Regions 被引量:2
3
作者 Ibrahim El rube Sameer Alsharif 《Computer Systems Science & Engineering》 SCIE EI 2022年第7期407-421,共15页
This article presents a method for the description of key points using simple statistics for regions controlled by neighboring key points to remedy the gap in existing descriptors.Usually,the existent descriptors such... This article presents a method for the description of key points using simple statistics for regions controlled by neighboring key points to remedy the gap in existing descriptors.Usually,the existent descriptors such as speeded up robust features(SURF),Kaze,binary robust invariant scalable keypoints(BRISK),features from accelerated segment test(FAST),and oriented FAST and rotated BRIEF(ORB)can competently detect,describe,and match images in the presence of some artifacts such as blur,compression,and illumination.However,the performance and reliability of these descriptors decrease for some imaging variations such as point of view,zoom(scale),and rotation.The intro-duced description method improves image matching in the event of such distor-tions.It utilizes a contourlet-based detector to detect the strongest key points within a specified window size.The selected key points and their neighbors con-trol the size and orientation of the surrounding regions,which are mapped on rec-tangular shapes using polar transformation.The resulting rectangular matrices are subjected to two-directional statistical operations that involve calculating the mean and standard deviation.Consequently,the descriptor obtained is invariant(translation,rotation,and scale)because of the two methods;the extraction of the region and the polar transformation techniques used in this paper.The descrip-tion method introduced in this article is tested against well-established and well-known descriptors,such as SURF,Kaze,BRISK,FAST,and ORB,techniques using the standard OXFORD dataset.The presented methodology demonstrated its ability to improve the match between distorted images compared to other descriptors in the literature. 展开更多
关键词 keypoint detection DESCRIPTORS neighbor region similarity invariance
在线阅读 下载PDF
Copy-Move Forgeries Detection and Localization Using Two Levels of Keypoints Extraction 被引量:1
4
作者 Soad Samir Eid Emary +1 位作者 Khaled Elsayed Hoda Onsi 《Journal of Computer and Communications》 2019年第9期1-18,共18页
Copy-move offense is considerably used to conceal or hide several data in the digital image for specific aim, and onto this offense some portion of the genuine image is reduplicated and pasted in the same image. There... Copy-move offense is considerably used to conceal or hide several data in the digital image for specific aim, and onto this offense some portion of the genuine image is reduplicated and pasted in the same image. Therefore, Copy-Move forgery is a very significant problem and active research area to check the confirmation of the image. In this paper, a system for Copy Move Forgery detection is proposed. The proposed system is composed of two stages: one is called the detection stages and the second is called the refine detection stage. The detection stage is executed using Speeded-Up Robust Feature (SURF) and Binary Robust Invariant Scalable Keypoints (BRISK) for feature detection and in the refine detection stage, image registration using non-linear transformation is used to enhance detection efficiency. Initially, the genuine image is picked, and then both SURF and BRISK feature extractions are used in parallel to detect the interest keypoints. This gives an appropriate number of interest points and gives the assurance for finding the majority of the manipulated regions. RANSAC is employed to find the superior group of matches to differentiate the manipulated parts. Then, non-linear transformation between the best-matched sets from both extraction features is used as an optimization to get the best-matched set and detect the copied regions. A number of numerical experiments performed using many benchmark datasets such as, the CASIA v2.0, MICC-220, MICC-F600 and MICC-F2000 datasets. With the proposed algorithm, an overall average detection accuracy of 95.33% is obtained for evaluation carried out with the aforementioned databases. Forgery detection achieved True Positive Rate of 97.4% for tampered images with object translation, different degree of rotation and enlargement. Thus, results from different datasets have been set, proving that the proposed algorithm can individuate the altered areas, with high reliability and dealing with multiple cloning. 展开更多
关键词 COPY MOVE FORGERY DETECTION keypoint Based Methods SURF BRISK Bi-Cubic Interpolation
暂未订购
Keypoints and Descriptors Based on Cross-Modality Information Fusion for Camera Localization
5
作者 MA Shuo GAO Yongbin+ +4 位作者 TIAN Fangzheng LU Junxin HUANG Bo GU Jia ZHOU Yilong 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2021年第2期128-136,共9页
To address the problem that traditional keypoint detection methods are susceptible to complex backgrounds and local similarity of images resulting in inaccurate descriptor matching and bias in visual localization, key... To address the problem that traditional keypoint detection methods are susceptible to complex backgrounds and local similarity of images resulting in inaccurate descriptor matching and bias in visual localization, keypoints and descriptors based on cross-modality fusion are proposed and applied to the study of camera motion estimation. A convolutional neural network is used to detect the positions of keypoints and generate the corresponding descriptors, and the pyramid convolution is used to extract multi-scale features in the network. The problem of local similarity of images is solved by capturing local and global feature information and fusing the geometric position information of keypoints to generate descriptors. According to our experiments, the repeatability of our method is improved by 3.7%, and the homography estimation is improved by 1.6%. To demonstrate the practicability of the method, the visual odometry part of simultaneous localization and mapping is constructed and our method is 35% higher positioning accuracy than the traditional method. 展开更多
关键词 keypoints DESCRIPTORS cross-modality information global feature visual odometry
原文传递
Two-Fold and Symmetric Repeatability Rates for Comparing Keypoint Detectors
6
作者 Ibrahim El rube’ 《Computers, Materials & Continua》 SCIE EI 2022年第12期6495-6511,共17页
The repeatability rate is an important measure for evaluating and comparing the performance of keypoint detectors.Several repeatability rate measurementswere used in the literature to assess the effectiveness of keypo... The repeatability rate is an important measure for evaluating and comparing the performance of keypoint detectors.Several repeatability rate measurementswere used in the literature to assess the effectiveness of keypoint detectors.While these repeatability rates are calculated for pairs of images,the general assumption is that the reference image is often known and unchanging compared to other images in the same dataset.So,these rates are asymmetrical as they require calculations in only one direction.In addition,the image domain in which these computations take place substantially affects their values.The presented scatter diagram plots illustrate how these directional repeatability rates vary in relation to the size of the neighboring region in each pair of images.Therefore,both directional repeatability rates for the same image pair must be included when comparing different keypoint detectors.This paper,firstly,examines several commonly utilized repeatability rate measures for keypoint detector evaluations.The researcher then suggests computing a two-fold repeatability rate to assess keypoint detector performance on similar scene images.Next,the symmetric mean repeatability rate metric is computed using the given two-fold repeatability rates.Finally,these measurements are validated using well-known keypoint detectors on different image groups with various geometric and photometric attributes. 展开更多
关键词 Repeatability rate keypoint detector symmetric measure geometric transformation scatter diagram
在线阅读 下载PDF
Multi-Level Feature Aggregation-Based Joint Keypoint Detection and Description
7
作者 Jun Li Xiang Li +2 位作者 Yifei Wei Mei Song Xiaojun Wang 《Computers, Materials & Continua》 SCIE EI 2022年第11期2529-2540,共12页
Image keypoint detection and description is a popular method to find pixel-level connections between images,which is a basic and critical step in many computer vision tasks.The existing methods are far from optimal in... Image keypoint detection and description is a popular method to find pixel-level connections between images,which is a basic and critical step in many computer vision tasks.The existing methods are far from optimal in terms of keypoint positioning accuracy and generation of robust and discriminative descriptors.This paper proposes a new end-to-end selfsupervised training deep learning network.The network uses a backbone feature encoder to extract multi-level feature maps,then performs joint image keypoint detection and description in a forward pass.On the one hand,in order to enhance the localization accuracy of keypoints and restore the local shape structure,the detector detects keypoints on feature maps of the same resolution as the original image.On the other hand,in order to enhance the ability to percept local shape details,the network utilizes multi-level features to generate robust feature descriptors with rich local shape information.A detailed comparison with traditional feature-based methods Scale Invariant Feature Transform(SIFT),Speeded Up Robust Features(SURF)and deep learning methods on HPatches proves the effectiveness and robustness of the method proposed in this paper. 展开更多
关键词 Multi-scale information keypoint detection and description artificial intelligence
在线阅读 下载PDF
Clothes Keypoints Detection with Cascaded Pyramid Network
8
作者 LI Chao ZHAO Mingbo 《Journal of Donghua University(English Edition)》 EI CAS 2020年第3期232-237,共6页
With the development of the society,people's requirements for clothing matching are constantly increasing when developing clothing recommendation system.This requires that the algorithm for understanding the cloth... With the development of the society,people's requirements for clothing matching are constantly increasing when developing clothing recommendation system.This requires that the algorithm for understanding the clothing images should be sufficiently efficient and robust.Therefore,we detect the keypoints in clothing accurately to capture the details of clothing images.Since the joint points of the garment are similar to those of the human body,this paper utilizes a kind of deep neural network called cascaded pyramid network(CPN)about estimating the posture of human body to solve the problem of keypoints detection in clothing.In this paper,we first introduce the structure and characteristic of this neural network when detecting keypoints.Then we evaluate the results of the experiments and verify effectiveness of detecting keypoints of clothing with CPN,with normalized error about 5%7%.Finally,we analyze the influence of different backbones when detecting keypoints in this network. 展开更多
关键词 deep learning keypoints estimation convolutional neural network
在线阅读 下载PDF
Skeleton Keypoints Extraction Method Combined with Object Detection
9
作者 Jiabao Shi Zhao Qiu +4 位作者 Tao Chen Jiale Lin Hancheng Huang Yunlong He d Yu Yang 《Journal of New Media》 2022年第2期97-106,共10页
Big data is a comprehensive result of the development of the Internet of Things and information systems.Computer vision requires a lot of data as the basis for research.Because skeleton data can adapt well to dynamic ... Big data is a comprehensive result of the development of the Internet of Things and information systems.Computer vision requires a lot of data as the basis for research.Because skeleton data can adapt well to dynamic environment and complex background,it is used in action recognition tasks.In recent years,skeleton-based action recognition has received more and more attention in the field of computer vision.Therefore,the keypoints of human skeletons are essential for describing the pose estimation of human and predicting the action recognition of the human.This paper proposes a skeleton point extraction method combined with object detection,which can focus on the extraction of skeleton keypoints.After a large number of experiments,our model can be combined with object detection for skeleton points extraction,and the detection efficiency is improved. 展开更多
关键词 Big data object decetion skeleton keypoints lightweight openpose
在线阅读 下载PDF
DEKR-SPrior:An Efficient Bottom-Up Keypoint Detection Model for Accurate Pod Phenotyping in Soybean
10
作者 Jingjing He Lin Weng +11 位作者 Xiaogang Xu Ruochen Chen Bo Peng Nannan Li Zhengchao Xie Lijian Sun Qiang Han Pengfei He Fangfang Wang Hui Yu Javaid Akhter Bhat Xianzhong Feng 《Plant Phenomics》 SCIE EI CSCD 2024年第3期655-668,共14页
The pod and seed counts are important yield-related traits in soybean.High-precision soybean breeders face the major challenge of accurately phenotyping the number of pods and seeds in a high-throughput manner.Recent ... The pod and seed counts are important yield-related traits in soybean.High-precision soybean breeders face the major challenge of accurately phenotyping the number of pods and seeds in a high-throughput manner.Recent advances in artificial intelligence,especially deep learning(DL)models,have provided new avenues for high-throughput phenotyping of crop traits with increased precision.However,the available DL models are less effective for phenotyping pods that are densely packed and overlap in insitu soybean plants;thus,accurate phenotyping of the number of pods and seeds in soybean plant is an important challenge.To address this challenge,the present study proposed a bottom-up model,DEKR-SPrior(disentangled keypoint regression with structural prior),for insitu soybean pod phenotyping,which considers soybean pods and seeds analogous to human people and joints,respectively.In particular,we designed a novel structural prior(SPrior)module that utilizes cosine similarity to improve feature discrimination,which is important for differentiating closely located seeds from highly similar seeds.To further enhance the accuracy of pod location,we cropped full-sized images into smaller and high-resolution subimages for analysis.The results on our image datasets revealed that DEKR-SPrior outperformed multiple bottom-up models,viz.,Lightweight-Open Pose,OpenPose,HigherH R Net,and DEKR,reducing the mean absolute error from 25.81(in the original DEKR)to 21.11(in the DEKR-SPrior)in pod phenotyping.This paper demonstrated the great potential of DEKR-SPrior for plant phenotyping,and we hope that DEKR-SPrior will help future plant phenotyping. 展开更多
关键词 BOTTOM-UP detection model ACCURATE dekr-sprior EFFICIENT keypoint PHENOTYPING SOYBEAN
原文传递
基于深度学习的家蚕计数与体长测量研究
11
作者 刘莫尘 孙崇凯 +6 位作者 李正浩 常昊 尚明瑞 宋占华 刘贤军 孙廷举 闫银发 《山东农业大学学报(自然科学版)》 北大核心 2025年第4期616-627,共12页
家蚕计数与体长测量是在家蚕养殖过程中的必要环节,传统家蚕计数及体长测量方法主要人工完成,易受主观因素影响,较难实现对家蚕数量和家蚕体长的快速、准确监控。本文使用深度学习的方法实现了家蚕计数及家蚕体长测量,以饲料育家蚕为研... 家蚕计数与体长测量是在家蚕养殖过程中的必要环节,传统家蚕计数及体长测量方法主要人工完成,易受主观因素影响,较难实现对家蚕数量和家蚕体长的快速、准确监控。本文使用深度学习的方法实现了家蚕计数及家蚕体长测量,以饲料育家蚕为研究对象,构建了家蚕关键点检测数据集,提出了YOLOv8-Pose-GE算法。该算法在YOLOv8-Pose的Backbone部分加入GAM注意力机制,可以放大全局交互,进行多层感知器的3D排列,提高模型特征提取能力的同时减少信息损失;在Neck部分添加ECA注意力机制,具有实现全局空间信息聚合的部分和进行跨通道交互进行建模的部分,可以提升模型对重要特征的感知能力,使模型更好的处理提取家蚕关键点特征。YOLOv8-Pose-GE的mAP、P和R分别为94.7%、95.31%和87.98%,均优于其他常用的关键点检测算法。该算法同时兼顾了速度,其FPS达到37.61 s^(−1)。本方法可以依靠YOLOv8-Pose-EG的head部分输出的坐标来对家蚕及家蚕关键点位置进行定位,并按顺序依次用直线连接家蚕关键点,由连线长度得到家蚕体长,同时实现家蚕计数。本文对家蚕拍摄录像中随机截取10帧图片进行计数实验,其MAE_L、MRE_L和MSD_L由分别为1.6头、3.6%和2.1头,说明模型具有较高的准确性的同时具有较高的稳定性。本文对40头家蚕(1-5龄家蚕中各随机取8头)进行测量实验,由结果分析得,该算法具有家蚕龄期越高,测量效果越好的特点,尤其5龄,MAE_L、MRE_L、MSD_L和PCC分别为12.29 px、1.87%、4.15px和0.977,总体误差较小。该算法满足家蚕计数及体长测量的需要,为提高家蚕养殖的质量,加强家蚕品种选育提供技术支持。 展开更多
关键词 家蚕 深度学习 计数 体长 关键点检测
在线阅读 下载PDF
基于改进YOLO11的站场图图元检测方法
12
作者 李开成 李相龙 +1 位作者 袁磊 魏国栋 《北京交通大学学报》 北大核心 2025年第5期198-208,共11页
针对铁路信号系统站场图图纸信息难以提取的问题,提出一种基于YOLO11改进的站场图图元检测模型YOLO11-AT,通过构建融合目标检测与关键点检测的检测模型,实现了图元检测与关键点的自动提取.首先,在颈部网络部分引入了注意力尺度序列融合(... 针对铁路信号系统站场图图纸信息难以提取的问题,提出一种基于YOLO11改进的站场图图元检测模型YOLO11-AT,通过构建融合目标检测与关键点检测的检测模型,实现了图元检测与关键点的自动提取.首先,在颈部网络部分引入了注意力尺度序列融合(Attentional Scale Se-quence Fusion,ASF)模块,融合不同尺度的特征,增强模型对小目标的检测性能;其次,在检测头部分采用了任务对齐动态检测头(Task Align Dynamic Detect Head,TADDH),通过任务对齐机制改善分类任务和定位任务之间的特征交互,减少特征冲突,提高密集目标检测精度;最后,采用切片辅助超推理(Slicing Aided Hyper Inference,SAHI)技术提高模型在高分辨率站场图像上的检测精度.在构建的多样式站场图数据集上,对提出的方法进行实验验证.实验结果表明:相较于YOLO11s-pose,YOLO11-AT在精确率、召回率、mAP0.5和mAP0.5-kp分别提升了9%、2.2%、4.2%和3.2%,同时参数量下降了4.3%;与现有主流检测模型相比,YOLO11-AT在检测精度与效率之间取得了更优的平衡;研究结果能够适应多种样式的站场图,可以满足实际应用的需求,为站场图图纸的自动化信息提取提供了一种可行的解决方案. 展开更多
关键词 站场图 图像识别 YOLO11 关键点检测 图纸信息提取
在线阅读 下载PDF
基于关键点和步行特征的猪只跛行检测方法
13
作者 杨秋妹 黄森鹏 +3 位作者 肖德琴 惠向阳 黄一桂 李文刚 《农业机械学报》 北大核心 2025年第5期466-474,共9页
猪只跛行问题为猪场的生产和管理带来了挑战,因此准确检测猪只跛行情况至关重要。目前猪场主要依赖人工观察和记录,效率低耗时长,且可能存在主观误差。鉴于此,提出一种基于关键点和步行特征的猪只跛行检测方法。首先,定义并确定了猪只... 猪只跛行问题为猪场的生产和管理带来了挑战,因此准确检测猪只跛行情况至关重要。目前猪场主要依赖人工观察和记录,效率低耗时长,且可能存在主观误差。鉴于此,提出一种基于关键点和步行特征的猪只跛行检测方法。首先,定义并确定了猪只的关键点信息,关键点包括猪只的腿、膝盖、背部等重要部位。基于关键点,采用改进YOLO v8n-pose模型进行检测。该模型在YOLO v8n-pose的基础上,在颈部引入BiFPN双向特征金字塔网络进行多尺度特征融合,同时在骨干网络中引入RepGhost网络,以降低特征提取网络的参数量和浮点运算量。然后利用检测出的关键点坐标计算猪只的步长、膝盖弯曲程度和背部曲率等步行特征,并将这些特征输入到K最近邻算法进行跛行与非跛行的分类。实验结果表明,改进YOLO v8n-pose模型平均精度均值(mAP)达到92.4%,比原始YOLO v8n-pose模型提高4.2个百分点。与其他关键点检测模型(HRNet-w32、Lite-HRNet、ResNet50、ViPNAS和Hourglass)相比,mAP分别提高10.2、11.6、14.2、11.8、12.5个百分点。K近邻算法在猪只跛行测试集上的检测精度为81.7%,比BP算法、Decision Tree算法和SVM算法分别提高1.5、11.3、6.5个百分点。以上结果表明,本文提出的猪只跛行检测方法可行,能够为猪场检测提供技术支持。 展开更多
关键词 猪只 跛行 关键点检测 YOLO v8n-pose 步行特征
在线阅读 下载PDF
融合边缘特征与细节感知网络的YOLOv8s髋关节关键点检测算法
14
作者 吕佳 段训禄 陈欣 《光电工程》 北大核心 2025年第3期84-99,共16页
髋关节关键点的准确识别对于提高发育性髋关节发育不良诊断精度具有重要意义。然而,在儿童髋关节X射线图像中,关键点所在的骨骼区域通常对比度低和边缘模糊,导致边缘特征不明显。同时,在特征提取过程中,下采样操作会进一步弱化边缘信息... 髋关节关键点的准确识别对于提高发育性髋关节发育不良诊断精度具有重要意义。然而,在儿童髋关节X射线图像中,关键点所在的骨骼区域通常对比度低和边缘模糊,导致边缘特征不明显。同时,在特征提取过程中,下采样操作会进一步弱化边缘信息。此外,关键点邻域内的关键结构易受背景干扰,这些因素均限制了关键点的精确定位。为此,本文提出了一种融合边缘特征与细节感知网络的YOLOv8s髋关节关键点检测算法。该算法在网络中设计了边缘特征强化模块,以捕获关键点周围空间信息并增强其所在的边缘特征;同时,提出细节感知网络,对多层级特征进行融合与优化,增强对图像中细微结构的感知能力。本文使用重庆医科大学附属儿童医院影像科提供的髋关节X射线图像数据集进行实验,结果显示,关键点的平均定位误差和平均角度误差降低至4.2090pixel和1.4872°,相较于YOLOv8s降低了6.8%和9.9%,显著优于现有方法。实验证明,本文算法有效提升了关键点的检测精度,为临床诊断提供了重要参考。 展开更多
关键词 发育性髋关节发育不良 关键点检测 YOLOv8s 边缘特征强化 细节感知网络
在线阅读 下载PDF
煤矿井下人员危险行为检测方法
15
作者 张旭辉 余恒翰 +6 位作者 杜昱阳 杨文娟 赵亦辉 万继成 王彦群 赵典 汤杜炜 《工矿自动化》 北大核心 2025年第5期64-71,共8页
井下人员危险行为检测是煤矿安全防控的关键环节。现有目标检测技术用于人员危险行为检测时,受煤矿井下复杂工况、设备遮挡、多目标密集、粉尘干扰等因素影响,存在特征提取不准确等问题,且未明确界定人员危险行为。以YOLOv8−pose模型为... 井下人员危险行为检测是煤矿安全防控的关键环节。现有目标检测技术用于人员危险行为检测时,受煤矿井下复杂工况、设备遮挡、多目标密集、粉尘干扰等因素影响,存在特征提取不准确等问题,且未明确界定人员危险行为。以YOLOv8−pose模型为基准架构,采用DCNv4和PConv模块融合的DCNv4−PConv混合模块代替标准卷积,添加混合局部通道注意力(MLCA)模块,并采用感受野注意力卷积(RFAConv)模块替换检测头,构建了PMR−YOLO模型,用于检测井下监控图像中人体关键点,提升检测精度和运算速度。在此基础上设计了人员行为识别算法,将井下人员行为划分为9种类别,基于YOLOv8−pose模型检测的人体关键点形成人体骨架,判断人员行为类别型。采用DsLMF+数据集进行消融实验、对比实验和人员行为识别实验,结果表明:DCNv4−PConv混合模块、MLCA模块、RFAConv模块的引入有效提高了YOLOv8−pose模型的精确度、召回率和平均精度均值(mAP);PMR−YOLO模型对人体关键点特征提取的精确度、召回率和mAP分别为0.893,0.841,0.852,较YOLOv8−pose模型分别提高了6.9%,14.4%,10.5%;基于PMR−YOLO模型的检测方法可有效识别井下人员9种行为类别,识别准确率均不低于96%。 展开更多
关键词 视频识别 危险行为检测 人员行为识别 YOLOv8−pose模型 人体关键点检测
在线阅读 下载PDF
卫星单目位姿估计的关键点检测与不确定度同步预测
16
作者 苏昂 王梓 +1 位作者 王靖皓 李璋 《国防科技大学学报》 北大核心 2025年第2期98-108,共11页
卫星单目视觉位姿估计通常先提取卫星图像关键特征点,再求解n点透视(perspective-n-points, PnP)问题得到摄像机与卫星之间的相对位姿关系,其中卫星关键点检测的精度是决定单目位姿估计精度的关键。针对该问题提出一种卫星关键点高精度... 卫星单目视觉位姿估计通常先提取卫星图像关键特征点,再求解n点透视(perspective-n-points, PnP)问题得到摄像机与卫星之间的相对位姿关系,其中卫星关键点检测的精度是决定单目位姿估计精度的关键。针对该问题提出一种卫星关键点高精度检测方法,该算法在预测关键点图像坐标的同时给出关键点坐标预测的不确定度,在此基础上构建加权的PnP约束方程求解相对位置和姿态,显著提升了卫星单目位姿估计精度。在公开的卫星单目位姿估计SPEED数据集上开展了相关实验,实验结果表明提出的同步预测关键点坐标与不确定度的卫星关键点检测方法能够有效提升关键点检测精度,并且通过求解加权的单目位姿估计问题显著提升了卫星单目位姿估计精度。 展开更多
关键词 关键点检测 不确定度预测 TRANSFORMER 单目视觉 卫星位姿估计
在线阅读 下载PDF
基于智能形状匹配的零件全尺寸在线视觉检测方法
17
作者 许桢英 杨为涛 +2 位作者 雷英俊 刘鑫 沙之洵 《电子测量与仪器学报》 北大核心 2025年第8期218-229,共12页
针对传统视觉方法在测量不同工件全尺寸时的局限性,提出了一种基于形状匹配的工件全尺寸在线检测方法。该方法通过将目标工件图像输入到改进的Superpoin关键点检测网络,得到所有关键点,并利用关键点实现工件轮廓的描述;然后将关键点模... 针对传统视觉方法在测量不同工件全尺寸时的局限性,提出了一种基于形状匹配的工件全尺寸在线检测方法。该方法通过将目标工件图像输入到改进的Superpoin关键点检测网络,得到所有关键点,并利用关键点实现工件轮廓的描述;然后将关键点模板与目标工件的关键点一起输入点渲染层,使用增强关键点位置信息的Superglue特征全匹配算法,提取与模板点匹配的关键点,以及关键点之间的距离,实现工件的全尺寸测量。为了验证方法的有效性,分别进行了量块尺寸检测实验,标定板尺寸检测实验和原电池尺寸检测实验,实验结果表明,对于25 mm零级量块(精度优于±0.14μm)的尺寸检测实验,系统十次重复测量结果的最大偏差为±0.02 mm,标准差为0.01 mm,表明系统具有较高的重复性精度;对于棋盘格标定板,尺寸测量误差不超过±0.03 mm,验证了该方法的可行性;在原电池的尺寸测量实验中,七号电池尺寸检测的误差范围为±0.03 mm,平均耗时为0.08 s,五号电池的尺寸检测误差为±0.03 mm,平均耗时为0.09 s,均能够满足该企业原电池产线生产过程中,在线检测的±0.05 mm精度要求和0.1 s的实时性检测要求。相比于传统算法需要针对不同工件采用不同的检测算法,所提出的方法能够有效适应不同工件的尺寸检测需求,并可广泛应用于工业现场的零件在线全尺寸检测。 展开更多
关键词 关键点检测 特征匹配 在线尺寸检测 全尺寸
原文传递
LFTA:轻量级特征提取与加性注意力的特征匹配方法
18
作者 郭志强 汪子涵 +1 位作者 王永圣 陈鹏羽 《电子与信息学报》 北大核心 2025年第8期2872-2882,共11页
近年来,特征匹配技术在计算机视觉任务中得到了广泛应用,如3维重建、视觉定位和即时定位与地图构建(SLAM)等。然而,现有匹配算法面临精度与效率的权衡困境:高精度方法常因复杂模型设计导致计算复杂度攀升,难以满足实时需求;而快速匹配... 近年来,特征匹配技术在计算机视觉任务中得到了广泛应用,如3维重建、视觉定位和即时定位与地图构建(SLAM)等。然而,现有匹配算法面临精度与效率的权衡困境:高精度方法常因复杂模型设计导致计算复杂度攀升,难以满足实时需求;而快速匹配策略通过特征简化或近似计算虽实现亚线性时间复杂度,却因表征能力受限与误差累积,无法达到实际应用中的精度要求。为此,该文提出一种基于加性注意力的轻量化特征匹配方法—LFTA。该方法通过轻量化多尺度特征提取网络生成高效特征表示,并引入三重交换融合注意力机制,提升了在复杂场景下的特征鲁棒性;同时提出了自适应高斯核生成关键点热力图和动态非极大值抑制算法,以提高关键点的提取精度;此外,该文设计了结合加性Transformer注意力机制和深度可分离卷积位置编码的轻量化模块,对粗粒度匹配结果进行微调,从而生成高精度的像素级匹配点对。为了验证所提方法的有效性,在MegaDepth和ScanNet两个公开数据集上进行了实验评估,并通过消融实验和对比实验验证了各模块的贡献和模型的综合性能。实验结果表明,所提算法在姿态估计上的性能相比于轻量化的算法有显著提升,且与性能较高的算法相比推理时间有显著下降,实现了高效性与高精度的平衡。 展开更多
关键词 特征匹配 加性注意力机制 轻量化网络 自适应关键点提取 像素级匹配
在线阅读 下载PDF
基于关键点矫正机制的设施化养殖条件下死鱼识别方法
19
作者 万鹏 肖畅宇 +2 位作者 汪荣 雷翔 范豪 《农业工程学报》 北大核心 2025年第12期269-277,共9页
针对设施化养殖条件下鱼群养殖密度大,养殖池中死亡鱼体不能及时检测识别容易腐烂导致疾病传播、造成鱼群死亡的问题,该研究提出了一种根据鱼体水下姿态特征结合关键点矫正机制的死鱼识别方法;并以圆形养殖池养殖模式下的大口黑鲈(Micro... 针对设施化养殖条件下鱼群养殖密度大,养殖池中死亡鱼体不能及时检测识别容易腐烂导致疾病传播、造成鱼群死亡的问题,该研究提出了一种根据鱼体水下姿态特征结合关键点矫正机制的死鱼识别方法;并以圆形养殖池养殖模式下的大口黑鲈(Micropterus salmoides)为研究对象,通过水下机器人采集养殖池底部正常鱼体、濒死鱼体、死亡鱼体等图像,构建了水下死鱼目标检测和死亡鱼体关键点检测数据集;根据传统多层感知机模型构建了一种MLP-Block(multilayer perceptron block)多层感知机模块,提出了一种多路径坐标注意力机制MSPCA(multi split channel attention),引入优化动态卷积网络,构建了MLPNet-Pose网络模型;基于该网络模型,利用分组解耦头融合鱼体特征,实现死鱼目标检测以及死亡鱼体关键点检测,同时通过关键点矫正机制提高鱼体姿态识别的准确性。试验结果表明:改进后算法在测试数据集上对水下正常鱼群和死鱼的检测准确率分别为99.1%和96.0%。改进后的水下鱼体关键点检测算法具有较高的检测精度、检测速度和较低的参数量,可以为水下死鱼识别和鱼体关键点检测提供一定的理论和技术基础。 展开更多
关键词 死鱼识别 关键点矫正机制 设施化养殖 水下鱼群检测 深度学习
在线阅读 下载PDF
High-accuracy real-time satellite pose estimation for in-orbit applications
20
作者 Zi WANG Jinghao WANG +2 位作者 Jiyang YU Zhang LI Qifeng YU 《Chinese Journal of Aeronautics》 2025年第6期130-142,共13页
Vision-based relative pose estimation plays a pivotal role in various space missions.Deep learning enhances monocular spacecraft pose estimation,but high computational demands necessitate model simplification for onbo... Vision-based relative pose estimation plays a pivotal role in various space missions.Deep learning enhances monocular spacecraft pose estimation,but high computational demands necessitate model simplification for onboard systems.In this paper,we aim to achieve an optimal balance between accuracy and computational efficiency.We present a Perspective-n-Point(PnP)based method for spacecraft pose estimation,leveraging lightweight neural networks to localize semantic keypoints and reduce computational load.Since the accuracy of keypoint localization is closely related to the heatmap resolution,we devise an efficient upsampling module to increase the resolution of heatmaps with minimal overhead.Furthermore,the heatmaps predicted by the lightweight models tend to show high-level noise.To tackle this issue,we propose a weighting strategy by analyzing the statistical characteristics of predicted semantic keypoints and substantially improve the pose estimation accuracy.The experiments carried out on the SPEED dataset underscore the prospect of our method in engineering applications.We dramatically reduce the model parameters to 0.7 M,merely 2.5%of that required by the top-performing method,and achieve lower pose estimation error and better real-time performance. 展开更多
关键词 keypoint detection Lightweight models Non-cooperative satellite Pose estimation Weighted PnP
原文传递
上一页 1 2 17 下一页 到第
使用帮助 返回顶部