To promote the use of green control technology and ensure the safety of food production and agricultural products, a demonstrative test of agricultural control, physical control and biological control conducted in the...To promote the use of green control technology and ensure the safety of food production and agricultural products, a demonstrative test of agricultural control, physical control and biological control conducted in the Honghu area of Jianghan Plain during 2010-2016 with medium rice as the object. In addition, their control ef- ficacy was compared with that of conventional use of chemical agents. The results showed that the green control measures could achieve the prevention and control requirements, and the control efficacy of some of them was even better than that of conventional use of chemical agents.展开更多
Nanotubes form clusters and are found in curved bundles in nano-tube films and nanocomposites.Separation phenomenon is sus-pected to occur in these curved bundles.In this study,the deformation of a single-wall carbon ...Nanotubes form clusters and are found in curved bundles in nano-tube films and nanocomposites.Separation phenomenon is sus-pected to occur in these curved bundles.In this study,the deformation of a single-wall carbon nanotube(SWCNT)interacting with curved bundle nanotubes is analyzed.It is assumed that the bundle is rigid and only van der Waals force acts between the nanotube and the bundle of nanotubes.A new method of model-ing geometric nonlinear behavior of the nanotube due to finite rotation and the corresponding van der Waals force is developed using co-rotational finite element method(CFEM)formulation,combined with small deformation beam theory,with the inclusion of axial force.Current developed CFEM method overcomes the limitation of linear Finite Element Method(FEM)formulation regarding large rotations and deformations of carbon nanotubes.This study provides a numerical tool to identify the critical curvature influence on the interaction of carbon nanotubes due to van der Waals forces and can provide more insight into studying irregula-rities in the electronic transport properties of adsorbed nanotubes in nanocomposites.展开更多
文摘To promote the use of green control technology and ensure the safety of food production and agricultural products, a demonstrative test of agricultural control, physical control and biological control conducted in the Honghu area of Jianghan Plain during 2010-2016 with medium rice as the object. In addition, their control ef- ficacy was compared with that of conventional use of chemical agents. The results showed that the green control measures could achieve the prevention and control requirements, and the control efficacy of some of them was even better than that of conventional use of chemical agents.
基金This work was supported by the Texas Institute for the Intelligent Bio-Nano Materials and Structure for Aerospace Vehicles,funded by NASA[NCC-1-02038].
文摘Nanotubes form clusters and are found in curved bundles in nano-tube films and nanocomposites.Separation phenomenon is sus-pected to occur in these curved bundles.In this study,the deformation of a single-wall carbon nanotube(SWCNT)interacting with curved bundle nanotubes is analyzed.It is assumed that the bundle is rigid and only van der Waals force acts between the nanotube and the bundle of nanotubes.A new method of model-ing geometric nonlinear behavior of the nanotube due to finite rotation and the corresponding van der Waals force is developed using co-rotational finite element method(CFEM)formulation,combined with small deformation beam theory,with the inclusion of axial force.Current developed CFEM method overcomes the limitation of linear Finite Element Method(FEM)formulation regarding large rotations and deformations of carbon nanotubes.This study provides a numerical tool to identify the critical curvature influence on the interaction of carbon nanotubes due to van der Waals forces and can provide more insight into studying irregula-rities in the electronic transport properties of adsorbed nanotubes in nanocomposites.