In this paper we investigate the nonlinear dynamics for optical bistabile(OB) model of homogeneously broadened two-level atomic medium interacting with a single mode of the ring cavity in the presence of a Kerr-nonlin...In this paper we investigate the nonlinear dynamics for optical bistabile(OB) model of homogeneously broadened two-level atomic medium interacting with a single mode of the ring cavity in the presence of a Kerr-nonlinear blackbody(KNB) radiation reservoir. We show the impact of the relative temperature of the reservoir on the transition between the dynamical states via bifurcation diagrams that represents the relation between maximum values of the output field and the relative temperature for fixed input field. Specifically, decreasing the relative temperature(T_b)causes the system to bifurcate from periodic to chaotic behavior and in turn reverts back to periodic behavior with further decrease of T_b. Varying atomic detuning leads to a change in the nature of the dynamic transition between the system's states from self pulsing to chaotic behavior.展开更多
We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-s...We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-squared squeezing in a Kerr-nonlinear blackbody is much larger than the corresponding squeezing in normal blackbody, and the degree of amplitude-squared squeezing is much larger than the amplitude squeezing for the same range of parameters in a Kerr-nonlinear blackbody.展开更多
文摘In this paper we investigate the nonlinear dynamics for optical bistabile(OB) model of homogeneously broadened two-level atomic medium interacting with a single mode of the ring cavity in the presence of a Kerr-nonlinear blackbody(KNB) radiation reservoir. We show the impact of the relative temperature of the reservoir on the transition between the dynamical states via bifurcation diagrams that represents the relation between maximum values of the output field and the relative temperature for fixed input field. Specifically, decreasing the relative temperature(T_b)causes the system to bifurcate from periodic to chaotic behavior and in turn reverts back to periodic behavior with further decrease of T_b. Varying atomic detuning leads to a change in the nature of the dynamic transition between the system's states from self pulsing to chaotic behavior.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10174024 and 10474025
文摘We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-squared squeezing in a Kerr-nonlinear blackbody is much larger than the corresponding squeezing in normal blackbody, and the degree of amplitude-squared squeezing is much larger than the amplitude squeezing for the same range of parameters in a Kerr-nonlinear blackbody.
基金supported by National Natural Science Foundation of China(10704001,61073048)the Key Project of Chinese Ministry of Education(210092)the Key Program of the Education Department of Anhui Province (KJ2009B179Z,2009SQRZ196,KJ2008A28ZC,KJ2009A048Z,2010SQRL153ZD,and KJ2010A287)