By using the method of eigenvectors, the atomic populations and emission spectrum are investigated in a system that consists of a cascade three-level atom resonantly interacting with a single-mode tield in a Kerr-like...By using the method of eigenvectors, the atomic populations and emission spectrum are investigated in a system that consists of a cascade three-level atom resonantly interacting with a single-mode tield in a Kerr-like medium. The atom and the field are assumed to be initially in the upper atomic state and the Fock state, respectively. Results for models with intensity-dependent coupling and with intensity-independent coupling are compared. It is found that both population dynamics and emission spectrum show no indications of atom-field decoupling in the strong field limit if the intensity-dependent coupling is taken into account.展开更多
The Hamiltonian of coupled three-level atoms interacting with light field in the cavity filled with Kerr-like medium is derived. A simplified analytic solution to the Schrodinger equation of the system is obtained. Th...The Hamiltonian of coupled three-level atoms interacting with light field in the cavity filled with Kerr-like medium is derived. A simplified analytic solution to the Schrodinger equation of the system is obtained. The case of A type atom with degenerate lower levels is discussed in detail. It is shown that the coupling strength between atoms and Kerr coefficient affect the system's dynamic behaviors, especially the modulation period and oscillation frequency of the squeezing parameters of the field and the collective dipole moment. Dynamic behaviors of the system are sensitive to the initial state of atoms.展开更多
In this paper, we find the invariant eigen-operators (IEOs) and the energy-level gap of a system with a two-level atom interacting with single mode cavity field through multi-photon transition in the presence of a K...In this paper, we find the invariant eigen-operators (IEOs) and the energy-level gap of a system with a two-level atom interacting with single mode cavity field through multi-photon transition in the presence of a Kerr-like medium. From this work, one can see that the IEO method in many eases is simpler and easier on obtaining the energy-level gap formula than the usual way.展开更多
In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, includin...In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, including the so-called entanglement sudden death effect. It is also shown analytically that the Kerr-like medium can repress entanglement sudden death and enhance the degree of atom-atom entanglement. A more interesting fact is that the Kerr effect is more obvious when each of the two cavities with have the Kerr-like medium than only one of them with the Kerr-like medium.展开更多
The time evolution of the linear entropy of an taking into consideration Stark shift and Kerr-like medium. atom in k-photon daynes-Cummings model is investigated The effect of both the Stark shift and Kerr-like medium...The time evolution of the linear entropy of an taking into consideration Stark shift and Kerr-like medium. atom in k-photon daynes-Cummings model is investigated The effect of both the Stark shift and Kerr-like medium on the linear entropy is analyzed using a numerical technique for the field initially in coherent state and in even coherent state. The results show that the presence of the Kerr-like medium and Stark shift has an important effect on the properties of the entropy and entanglement. It is also shown that the setting of the initial state plays a significant role in the evolution of the linear entropy and entanglement.展开更多
The cavity field spectrum of a cascade three-level atom interacting with single-mode field with Kerr-like medium in the cavity is investigated. The numerical results for the initial field in pure number state, coheren...The cavity field spectrum of a cascade three-level atom interacting with single-mode field with Kerr-like medium in the cavity is investigated. The numerical results for the initial field in pure number state, coherent state and squeezed vacuum state are calculated, respectively. It is found that the Kerr-like medium affects the spectral structure even though the initial field is in vacuum when the atom is in upper level. In the case of strong input field, the number state spectrum shows two peaks with different heights; and the superposition state spectrum shows a multipeak structure with an equal distance of two neighboring peaks. The spectral "central frequency" shifts away from the resonant frequency with the increasing of average photon number.展开更多
A system of a three-level atom interacting with single mode cavity field through multi-photon transition in the presence of a Kerr-like medium is proposed, and its pseudo-invariant eigen-operator (PIEO) and energy-l...A system of a three-level atom interacting with single mode cavity field through multi-photon transition in the presence of a Kerr-like medium is proposed, and its pseudo-invariant eigen-operator (PIEO) and energy-level gap are presented under one-order approximation.展开更多
基金The project supported by the ‘Qing Lan' project of Jiangsu Province of China under Grant No. 2005SL002J
文摘By using the method of eigenvectors, the atomic populations and emission spectrum are investigated in a system that consists of a cascade three-level atom resonantly interacting with a single-mode tield in a Kerr-like medium. The atom and the field are assumed to be initially in the upper atomic state and the Fock state, respectively. Results for models with intensity-dependent coupling and with intensity-independent coupling are compared. It is found that both population dynamics and emission spectrum show no indications of atom-field decoupling in the strong field limit if the intensity-dependent coupling is taken into account.
文摘The Hamiltonian of coupled three-level atoms interacting with light field in the cavity filled with Kerr-like medium is derived. A simplified analytic solution to the Schrodinger equation of the system is obtained. The case of A type atom with degenerate lower levels is discussed in detail. It is shown that the coupling strength between atoms and Kerr coefficient affect the system's dynamic behaviors, especially the modulation period and oscillation frequency of the squeezing parameters of the field and the collective dipole moment. Dynamic behaviors of the system are sensitive to the initial state of atoms.
文摘In this paper, we find the invariant eigen-operators (IEOs) and the energy-level gap of a system with a two-level atom interacting with single mode cavity field through multi-photon transition in the presence of a Kerr-like medium. From this work, one can see that the IEO method in many eases is simpler and easier on obtaining the energy-level gap formula than the usual way.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10374025)the Natural Science Foundation of Hunan Province of China (Grant No. 07JJ3013)the Education Ministry of Hunan Province of China (Grant No. 06A038)
文摘In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, including the so-called entanglement sudden death effect. It is also shown analytically that the Kerr-like medium can repress entanglement sudden death and enhance the degree of atom-atom entanglement. A more interesting fact is that the Kerr effect is more obvious when each of the two cavities with have the Kerr-like medium than only one of them with the Kerr-like medium.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10674038, 10604042National Basic Research Program of China under Grant No. 2006CB302901
文摘The time evolution of the linear entropy of an taking into consideration Stark shift and Kerr-like medium. atom in k-photon daynes-Cummings model is investigated The effect of both the Stark shift and Kerr-like medium on the linear entropy is analyzed using a numerical technique for the field initially in coherent state and in even coherent state. The results show that the presence of the Kerr-like medium and Stark shift has an important effect on the properties of the entropy and entanglement. It is also shown that the setting of the initial state plays a significant role in the evolution of the linear entropy and entanglement.
基金The project supported by the Natural Science Foundation of Shandong Province under Grant No. Y2004A09
文摘The cavity field spectrum of a cascade three-level atom interacting with single-mode field with Kerr-like medium in the cavity is investigated. The numerical results for the initial field in pure number state, coherent state and squeezed vacuum state are calculated, respectively. It is found that the Kerr-like medium affects the spectral structure even though the initial field is in vacuum when the atom is in upper level. In the case of strong input field, the number state spectrum shows two peaks with different heights; and the superposition state spectrum shows a multipeak structure with an equal distance of two neighboring peaks. The spectral "central frequency" shifts away from the resonant frequency with the increasing of average photon number.
文摘A system of a three-level atom interacting with single mode cavity field through multi-photon transition in the presence of a Kerr-like medium is proposed, and its pseudo-invariant eigen-operator (PIEO) and energy-level gap are presented under one-order approximation.