期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
Numerical simulation of the fluid and flexible rods interaction using a semi-resolved coupling model promoted by anisotropic Gaussian kernel function
1
作者 Caiping Jin Jingxin Zhang Yonglin Sun 《Theoretical & Applied Mechanics Letters》 2025年第1期5-8,共4页
The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computatio... The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computational fluid dynamics and the flexible rod dynamics is proposed using a two-way domain expansion method.The gov-erning equations of the flexible rod dynamics are discretized and solved by the finite element method,and the fluid flow is simulated by the finite volume method.The interaction between fluids and solid rods is modeled by introducing body force terms into the momentum equations.Referred to the traditional semi-resolved numerical model,an anisotropic Gaussian kernel function method is proposed to specify the interactive forces between flu-ids and solid bodies for non-circle rod cross-sections.A benchmark of the flow passing around a single flexible plate with a rectangular cross-section is used to validate the algorithm.Focused on the engineering applications,a test case of a finite patch of cylinders is implemented to validate the accuracy and efficiency of the coupled model. 展开更多
关键词 Semi-resolved coupling model Two-way domain expansion method Anisotropic Gaussian kernel function Flexible rod(s)
在线阅读 下载PDF
A Full-Newton Step Feasible Interior-Point Algorithm for the Special Weighted Linear Complementarity Problems Based on a Kernel Function 被引量:2
2
作者 GENG Jie ZHANG Mingwang ZHU Dechun 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第1期29-37,共9页
In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear ... In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method. 展开更多
关键词 interior-point algorithm weighted linear complementarity problem full-Newton step kernel function iteration complexity
原文传递
A Primal-dual Large-update Interior-point Algorithm for P_*(κ)-LCP Based on a New Class of Kernel Functions
3
作者 Ping JI Ming-wang ZHANG Xin LI 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2018年第1期119-134,共16页
In this paper, we propose a large-update primal-dual interior point algorithm for P_*(κ)-linear complementarity problem. The method is based on a new class of kernel functions which is neither classical logarithmi... In this paper, we propose a large-update primal-dual interior point algorithm for P_*(κ)-linear complementarity problem. The method is based on a new class of kernel functions which is neither classical logarithmic function nor self-regular functions. It is determines both search directions and the proximity measure between the iterate and the center path. We show that if a strictly feasible starting point is available, then the new algorithm has O(1 + 2κ)p√n(1/plog n + 1)^2 lognε iteration complexity which becomes O((1 + 2κ)√nlog n logn/ε)with special choice of the parameter p. It is matches the currently best known iteration bound for P*(κ)-linear complementarity problem. Some computational results have been provided. 展开更多
关键词 interior-point method kernel function COMPLEXITY linear complementarity problem
原文传递
A data-adaptive network design for the regional gravity field modelling using spherical radial basis functions
4
作者 Fang Zhang Huanling Liu Hanjiang Wen 《Geodesy and Geodynamics》 EI CSCD 2024年第6期627-634,共8页
A high-precision regional gravity field model is significant in various geodesy applications.In the field of modelling regional gravity fields,the spherical radial basis functions(SRBFs)approach has recently gained wi... A high-precision regional gravity field model is significant in various geodesy applications.In the field of modelling regional gravity fields,the spherical radial basis functions(SRBFs)approach has recently gained widespread attention,while the modelling precision is primarily influenced by the base function network.In this study,we propose a method for constructing a data-adaptive network of SRBFs using a modified Hierarchical Density-Based Spatial Clustering of Applications with Noise(HDBSCAN)algorithm,and the performance of the algorithm is verified by the observed gravity data in the Auvergne area.Furthermore,the turning point method is used to optimize the bandwidth of the basis function spectrum,which satisfies the demand for both high-precision gravity field and quasi-geoid modelling simultaneously.Numerical experimental results indicate that our algorithm has an accuracy of about 1.58 mGal in constructing the gravity field model and about 0.03 m in the regional quasi-geoid model.Compared to the existing methods,the number of SRBFs used for modelling has been reduced by 15.8%,and the time cost to determine the centre positions of SRBFs has been saved by 12.5%.Hence,the modified HDBSCAN algorithm presented here is a suitable design method for constructing the SRBF data adaptive network. 展开更多
关键词 Regional gravity field modelling Spherical radial basis functions Poisson kernel function HDBSCAN clustering algorithm
原文传递
2-complex Symmetric Weighted Composition Operators on Fock Space of C^(N)
5
作者 JIANG Zhijie 《数学进展》 北大核心 2025年第1期37-49,共13页
The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(... The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given. 展开更多
关键词 Fock space weighted composition operator 2-complex symmetric operator reproducing kernel function
原文传递
Corneal Topographic Restoration Imaging Based on Placido Disc
6
作者 WAN Xuanrun WANG Chaoxing +2 位作者 HU Jun JIANG Jian LI Kangmei 《Journal of Donghua University(English Edition)》 2025年第2期204-212,共9页
Corneal topography serves as an essential reference for diagnostic treatment in ophthalmology.Accurate corneal topography is crucial for clinical practice.In this study,the refractive power calculation was performed b... Corneal topography serves as an essential reference for diagnostic treatment in ophthalmology.Accurate corneal topography is crucial for clinical practice.In this study,the refractive power calculation was performed based on the initial corneal information collected using the Placido disc.A corneal point cloud model was established in polar coordinates,and an interpolation algorithm was proposed to fill missing points of the local bicubic B-spline by searching control points in the selfdefined interpolation matrix.The grid interpolation of the point cloud information and the smooth imaging of the final topographic map were achieved by Delaunay triangulation and Gaussian kernel function smoothing.Experiment results show that the proposed interpolation algorithm has higher accuracy than previous algorithms.The mean absolute error between the measured diopter of the original detection and the reconstructed is less than 0.300 D,indicating that this algorithm is feasible. 展开更多
关键词 corneal topography Placido disc point cloud model bicubic B-spline Gaussian kernel function
暂未订购
Nonlinear Model Predictive Control Based on Support Vector Machine with Multi-kernel 被引量:22
7
作者 包哲静 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期691-697,共7页
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a... Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm. 展开更多
关键词 nonlinear model predictive control support vector machine with multi-kernel nonlinear system identification kernel function
在线阅读 下载PDF
SVM with Quadratic Polynomial Kernel Function Based Nonlinear Model One-step-ahead Predictive Control 被引量:12
8
作者 钟伟民 何国龙 +1 位作者 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第3期373-379,共7页
A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identifica... A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function
在线阅读 下载PDF
Landslide prediction based on improved principal component analysis and mixed kernel function least squares support vector regression model 被引量:7
9
作者 LI Li-min CHENG Shao-kang WEN Zong-zhou 《Journal of Mountain Science》 SCIE CSCD 2021年第8期2130-2142,共13页
Landslide probability prediction plays an important role in understanding landslide information in advance and taking preventive measures.Many factors can influence the occurrence of landslides,which is easy to have a... Landslide probability prediction plays an important role in understanding landslide information in advance and taking preventive measures.Many factors can influence the occurrence of landslides,which is easy to have a curse of dimensionality and thus lead to reduce prediction accuracy.Then the generalization ability of the model will also decline sharply when there are only small samples.To reduce the dimension of calculation and balance the model’s generalization and learning ability,this study proposed a landslide prediction method based on improved principal component analysis(PCA)and mixed kernel function least squares support vector regression(LSSVR)model.First,the traditional PCA was introduced with the idea of linear discrimination,and the dimensions of initial influencing factors were reduced from 8 to 3.The improved PCA can not only weight variables but also extract the original feature.Furthermore,combined with global and local kernel function,the mixed kernel function LSSVR model was framed to improve the generalization ability.Whale optimization algorithm(WOA)was used to optimize the parameters.Moreover,Root Mean Square Error(RMSE),the sum of squared errors(SSE),Mean Absolute Error(MAE),Mean Absolute Precentage Error(MAPE),and reliability were employed to verify the performance of the model.Compared with radial basis function(RBF)LSSVR model,Elman neural network model,and fuzzy decision model,the proposed method has a smaller deviation.Finally,the landslide warning level obtained from the landslide probability can also provide references for relevant decision-making departments in emergency response. 展开更多
关键词 Landslide probability LSSVR Mixed kernel function Improved PCA Warning level
原文传递
Real-time road traffic states estimation based on kernel-KNN matching of road traffic spatial characteristics 被引量:3
10
作者 XU Dong-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2453-2464,共12页
The accurate estimation of road traffic states can provide decision making for travelers and traffic managers. In this work,an algorithm based on kernel-k nearest neighbor(KNN) matching of road traffic spatial charact... The accurate estimation of road traffic states can provide decision making for travelers and traffic managers. In this work,an algorithm based on kernel-k nearest neighbor(KNN) matching of road traffic spatial characteristics is presented to estimate road traffic states. Firstly, the representative road traffic state data were extracted to establish the reference sequences of road traffic running characteristics(RSRTRC). Secondly, the spatial road traffic state data sequence was selected and the kernel function was constructed, with which the spatial road traffic data sequence could be mapped into a high dimensional feature space. Thirdly, the referenced and current spatial road traffic data sequences were extracted and the Euclidean distances in the feature space between them were obtained. Finally, the road traffic states were estimated from weighted averages of the selected k road traffic states, which corresponded to the nearest Euclidean distances. Several typical links in Beijing were adopted for case studies. The final results of the experiments show that the accuracy of this algorithm for estimating speed and volume is 95.27% and 91.32% respectively, which prove that this road traffic states estimation approach based on kernel-KNN matching of road traffic spatial characteristics is feasible and can achieve a high accuracy. 展开更多
关键词 road traffic kernel function k nearest neighbor (KNN) state estimation spatial characteristics
在线阅读 下载PDF
Zeroes of the Bergman Kernels on Some New Hartogs Domains 被引量:5
11
作者 WANG An ,LIU Yu-lan 《Chinese Quarterly Journal of Mathematics》 CSCD 2011年第3期325-334,共10页
We obtain the Bergman kernel for a new type of Hartogs domain.The corresponding LU Qi-Keng's problem is considered.
关键词 grouping circular domain Bergman kernel function LU Qi-Keng domain
在线阅读 下载PDF
An iterative modified kernel based on training data 被引量:2
12
作者 周志祥 韩逢庆 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第1期121-128,共8页
To improve performance of a support vector regression, a new method for a modified kernel function is proposed. In this method, information of all samples is included in the kernel function with conformal mapping. Thu... To improve performance of a support vector regression, a new method for a modified kernel function is proposed. In this method, information of all samples is included in the kernel function with conformal mapping. Thus the kernel function is data-dependent. With a random initial parameter, the kernel function is modified repeatedly until a satisfactory result is achieved. Compared with the conventional model, the improved approach does not need to select parameters of the kernel function. Sim- ulation is carried out for the one-dimension continuous function and a case of strong earthquakes. The results show that the improved approach has better learning ability and forecasting precision than the traditional model. With the increase of the iteration number, the figure of merit decreases and converges. The speed of convergence depends on the parameters used in the algorithm. 展开更多
关键词 support vector regression data-dependent kernel function ITERATION
在线阅读 下载PDF
A Full-Newton Step Feasible IPM for Semidefinite Optimization Based on a Kernel Function with Linear Growth Term 被引量:2
13
作者 GENG Jie ZHANG Mingwang PANG Jinjuan 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2020年第6期501-509,共9页
In this paper,we propose and analyze a full-Newton step feasible interior-point algorithm for semidefinite optimization based on a kernel function with linear growth term.The kernel function is used both for determini... In this paper,we propose and analyze a full-Newton step feasible interior-point algorithm for semidefinite optimization based on a kernel function with linear growth term.The kernel function is used both for determining the search directions and for measuring the distance between the given iterate and theμ-center for the algorithm.By developing a new norm-based proximity measure and some technical results,we derive the iteration bound that coincides with the currently best known iteration bound for the algorithm with small-update method.In our knowledge,this result is the first instance of full-Newton step feasible interior-point method for SDO which involving the kernel function. 展开更多
关键词 semidefinite optimization interior-point algorithm kernel function iteration complexity
原文传递
Interior-Point Algorithm for Linear Optimization Based on a New Kernel Function 被引量:2
14
作者 CHEN Donghai ZHANG Mingwang LI Weihua 《Wuhan University Journal of Natural Sciences》 CAS 2012年第1期12-18,共7页
In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barr... In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barrier term. Iteration bounds both for large-and small-update methods are derived, namely, O(nlog(n/c)) and O(√nlog(n/ε)). This new kernel function has simple algebraic expression and the proximity function has not been used before. Analogous to the classical logarithmic kernel function, our complexity analysis is easier than the other pri- mal-dual interior-point methods based on logarithmic barrier functions and recent kernel functions. 展开更多
关键词 linear optimization interior-point algorithms pri- mal-dual methods kernel function polynomial complexity
原文传递
An algorithm for moving target detection in IR image based on grayscale distribution and kernel function 被引量:6
15
作者 王鲁平 张路平 +1 位作者 赵明 李飚 《Journal of Central South University》 SCIE EI CAS 2014年第11期4270-4278,共9页
A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to de... A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to deal with issues like the large computational complexity, the fluctuation of grayscale, and the noise in infrared images. Four characteristic points were selected by analyzing the grayscale distribution in infrared image, of which the series was quickly matched with an affine transformation model. The image was then divided into 32×32 squares and the gray-weighted kernel(GWK) for each square was calculated. At last, the MTD was carried out according to the variation of the four GWKs. The results indicate that the MTD can be achieved in real time using the algorithm with the fluctuations of grayscale and noise can be effectively suppressed. The detection probability is greater than 90% with the false alarm rate lower than 5% when the calculation time is less than 40 ms. 展开更多
关键词 moving target detection gray-weighted kernel function dynamic background
在线阅读 下载PDF
WAVELET KERNEL SUPPORT VECTOR MACHINES FOR SPARSE APPROXIMATION 被引量:1
16
作者 Tong Yubing Yang Dongkai Zhang Qishan 《Journal of Electronics(China)》 2006年第4期539-542,共4页
Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support... Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-periment show the feasibility and validity of wavelet kernel support vector machines. 展开更多
关键词 Wavelet kernel function Support Vector Machines (SVM) Sparse approximation Quadratic Programming (QP)
在线阅读 下载PDF
RECURSIVE REPRODUCING KERNELS HILBERT SPACES USING THE THEORY OF POWER KERNELS 被引量:1
17
作者 M. Mouattamid 《Analysis in Theory and Applications》 2012年第2期111-124,共14页
The main objective of this work is to decompose orthogonally the reproducing kernels Hilbert space using any conditionally positive definite kernels into smaller ones by introducing the theory of power kernels, and to... The main objective of this work is to decompose orthogonally the reproducing kernels Hilbert space using any conditionally positive definite kernels into smaller ones by introducing the theory of power kernels, and to show how to do this decomposition recur- sively. It may be used to split large interpolation problems into smaller ones with different kernels which are related to the original kernels. To reach this objective, we will reconstruct the reproducing kernels Hilbert space for the normalized and the extended kernels and give the recursive algorithm of this decomposition. 展开更多
关键词 Hilber space reproducing kernel interpolant power function and Condition-ally positive kernel
在线阅读 下载PDF
Improved Logistic Regression Algorithm Based on Kernel Density Estimation for Multi-Classification with Non-Equilibrium Samples
18
作者 Yang Yu Zeyu Xiong +1 位作者 Yueshan Xiong Weizi Li 《Computers, Materials & Continua》 SCIE EI 2019年第7期103-117,共15页
Logistic regression is often used to solve linear binary classification problems such as machine vision,speech recognition,and handwriting recognition.However,it usually fails to solve certain nonlinear multi-classifi... Logistic regression is often used to solve linear binary classification problems such as machine vision,speech recognition,and handwriting recognition.However,it usually fails to solve certain nonlinear multi-classification problem,such as problem with non-equilibrium samples.Many scholars have proposed some methods,such as neural network,least square support vector machine,AdaBoost meta-algorithm,etc.These methods essentially belong to machine learning categories.In this work,based on the probability theory and statistical principle,we propose an improved logistic regression algorithm based on kernel density estimation for solving nonlinear multi-classification.We have compared our approach with other methods using non-equilibrium samples,the results show that our approach guarantees sample integrity and achieves superior classification. 展开更多
关键词 Logistic regression MULTI-CLASSIFICATION kernel function density estimation NON-EQUILIBRIUM
在线阅读 下载PDF
Research on Chinese place name recognition based on kernel classifier
19
作者 宇缨 王晓龙 +1 位作者 刘秉权 王慧 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第1期79-82,共4页
A SVMs (Support Vector Machines) based method to identify Chinese place names is presented. In our approach, place name candidate is located according to a rational forming assumption, then SVMs based identification s... A SVMs (Support Vector Machines) based method to identify Chinese place names is presented. In our approach, place name candidate is located according to a rational forming assumption, then SVMs based identification strategy is used to distinguish whether one candidate is true place name or not. Referring to linguistic knowledge, basic semanteme of a contextual word and frequency information of words inside place name candidate are selected as features in our methodology. So dimension in the feature space is reduced dramatically and processing procedure is performed more efficiently. Result of open testing on unregistered place names achieves F-measure 83.25 in 8.17 million words news based on this project. 展开更多
关键词 SVMS Chinese place name feature selection semanteme kernel function
在线阅读 下载PDF
APPLICATION OF HOLOMORPHIC INVARIANTS IN REPRODUCING KERNEL
20
作者 潘利双 王安 《Acta Mathematica Scientia》 SCIE CSCD 2017年第2期355-367,共13页
We use holomorphic invariants to calculate the Bergman kernel for generalized quasi-homogeneous Reinhardt-Hartogs domains. In addition, we present a complete orthonormal basis for the Bergman space on bounded Reinhard... We use holomorphic invariants to calculate the Bergman kernel for generalized quasi-homogeneous Reinhardt-Hartogs domains. In addition, we present a complete orthonormal basis for the Bergman space on bounded Reinhardt-Hartogs domains. 展开更多
关键词 Generalized quasi-homogeneous domain Bergman kernel function holomorphic invariant
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部