期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Maximum Power Point Tracking Based on Improved Kepler Optimization Algorithm and Optimized Perturb&Observe under Partial Shading Conditions 被引量:1
1
作者 Zhaoqiang Wang Fuyin Ni 《Energy Engineering》 EI 2024年第12期3779-3799,共21页
Under the partial shading conditions(PSC)of Photovoltaic(PV)modules in a PV hybrid system,the power output curve exhibits multiple peaks.This often causes traditional maximum power point tracking(MPPT)methods to fall ... Under the partial shading conditions(PSC)of Photovoltaic(PV)modules in a PV hybrid system,the power output curve exhibits multiple peaks.This often causes traditional maximum power point tracking(MPPT)methods to fall into local optima and fail to find the global optimum.To address this issue,a composite MPPT algorithm is proposed.It combines the improved kepler optimization algorithm(IKOA)with the optimized variable-step perturb and observe(OIP&O).The update probabilities,planetary velocity and position step coefficients of IKOA are nonlinearly and adaptively optimized.This adaptation meets the varying needs of the initial and later stages of the iterative process and accelerates convergence.During stochastic exploration,the refined position update formulas enhance diversity and global search capability.The improvements in the algorithmreduces the likelihood of falling into local optima.In the later stages,the OIP&O algorithm decreases oscillation and increases accuracy.compared with cuckoo search(CS)and gray wolf optimization(GWO),simulation tests of the PV hybrid inverter demonstrate that the proposed IKOA-OIP&O algorithm achieves faster convergence and greater stability under static,local and dynamic shading conditions.These results can confirm the feasibility and effectiveness of the proposed PV MPPT algorithm for PV hybrid systems. 展开更多
关键词 PV hybrid inverter kepler optimization algorithm maximum power point tracking perturb and observe
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部