期刊文献+
共找到1,975篇文章
< 1 2 99 >
每页显示 20 50 100
Stability analysis of distributed Kalman filtering algorithm for stochastic regression model
1
作者 Siyu Xie Die Gan Zhixin Liu 《Control Theory and Technology》 2025年第2期161-175,共15页
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi... The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example. 展开更多
关键词 Distributed kalman filtering algorithm Stochastic cooperative information condition Sensor networks (L_(p))-exponential stability Stochastic regression model
原文传递
Research on Kalman Filtering Algorithmfor Deformation Information Series ofSimilar Single-Difference Model 被引量:10
2
作者 吕伟才 徐绍铨 《Journal of China University of Mining and Technology》 2004年第2期189-194,199,共7页
Using similar single-difference methodology(SSDM) to solve the deformation values of the monitoring points, there is unstability of the deformation information series, at sometimes.In order to overcome this shortcomin... Using similar single-difference methodology(SSDM) to solve the deformation values of the monitoring points, there is unstability of the deformation information series, at sometimes.In order to overcome this shortcoming, Kalman filtering algorithm for this series is established,and its correctness and validity are verified with the test data obtained on the movable platform in plane. The results show that Kalman filtering can improve the correctness, reliability and stability of the deformation information series. 展开更多
关键词 similar single-difference methodology GPS deformation monitoring single epoch deformation information series kalman filtering algorithm
在线阅读 下载PDF
WSN Mobile Target Tracking Based on Improved Snake-Extended Kalman Filtering Algorithm 被引量:1
3
作者 Duo Peng Kun Xie Mingshuo Liu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期28-40,共13页
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte... A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively. 展开更多
关键词 wireless sensor network(WSN)target tracking snake optimization algorithm extended kalman filter maneuvering target
在线阅读 下载PDF
A tracking algorithm based on adaptive Kalman filter with carrier-to-noise ratio estimation under solar radio bursts interference
4
作者 ZHU Xuefen LI Ang +2 位作者 LUO Yimei LIN Mengying TU Gangyi 《Journal of Systems Engineering and Electronics》 2025年第4期880-891,共12页
Solar radio burst(SRB)is one of the main natural interference sources of Global Positioning System(GPS)signals and can reduce the signal-to-noise ratio(SNR),directly affecting the tracking performance of GPS receivers... Solar radio burst(SRB)is one of the main natural interference sources of Global Positioning System(GPS)signals and can reduce the signal-to-noise ratio(SNR),directly affecting the tracking performance of GPS receivers.In this paper,a tracking algorithm based on the adaptive Kalman filter(AKF)with carrier-to-noise ratio estimation is proposed and compared with the conventional second-order phase-locked loop tracking algo-rithms and the improved Sage-Husa adaptive Kalman filter(SHAKF)algorithm.It is discovered that when the SRBs occur,the improved SHAKF and the AKF with carrier-to-noise ratio estimation enable stable tracking to loop signals.The conven-tional second-order phase-locked loop tracking algorithms fail to track the receiver signal.The standard deviation of the carrier phase error of the AKF with carrier-to-noise ratio estimation out-performs 50.51%of the improved SHAKF algorithm,showing less fluctuation and better stability.The proposed algorithm is proven to show more excellent adaptability in the severe envi-ronment caused by the SRB occurrence and has better tracking performance. 展开更多
关键词 solar radio burst(SRB) global positioning system(GPS) adaptive kalman filter(Akf) tracking algorithm.
在线阅读 下载PDF
Exploring on Hierarchical Kalman Filtering Fusion Accuracy
5
作者 罗森林 张鹤飞 潘丽敏 《Journal of Beijing Institute of Technology》 EI CAS 1998年第4期373-379,共7页
Aim To analyze the traditional hierarchical Kalman filtering fusion algorithm theoretically and point out that the traditional Kalman filtering fusion algorithm is complex and can not improve the tracking precision we... Aim To analyze the traditional hierarchical Kalman filtering fusion algorithm theoretically and point out that the traditional Kalman filtering fusion algorithm is complex and can not improve the tracking precision well, even it is impractical, and to propose the weighting average fusion algorithm. Methods The theoretical analysis and Monte Carlo simulation methods were ed to compare the traditional fusion algorithm with the new one,and the comparison of the root mean square error statistics values of the two algorithms was made. Results The hierarchical fusion algorithm is not better than the weighting average fusion and feedback weighting average algorithm The weighting filtering fusion algorithm is simple in principle, less in data, faster in processing and better in tolerance.Conclusion The weighting hierarchical fusion algorithm is suitable for the defective sensors.The feedback of the fusion result to the single sersor can enhance the single sensorr's precision. especially once one sensor has great deviation and low accuracy or has some deviation of sample period and is asynchronous to other sensors. 展开更多
关键词 kalman filtering hierarchical fusion algorithm weighting average feedback fusion algorithm
在线阅读 下载PDF
基于LOF-KF-WOA优化模糊PID的带钢酸洗温度控制系统
6
作者 王力 辛宇罡 +3 位作者 杨洪凯 张磊 何松霖 杨武全 《轧钢》 北大核心 2025年第5期142-149,183,共9页
针对带钢酸洗温度控制过程中,模糊PID易受噪音干扰、模糊规则匹配性差及系统适应性降低等问题的影响,本文提出了一种基于局域离群因子(Local Outlier Factor,LOF)、卡尔曼滤波(Kalman Filter,KF)与鲸鱼优化算法(Whale Optimization Algo... 针对带钢酸洗温度控制过程中,模糊PID易受噪音干扰、模糊规则匹配性差及系统适应性降低等问题的影响,本文提出了一种基于局域离群因子(Local Outlier Factor,LOF)、卡尔曼滤波(Kalman Filter,KF)与鲸鱼优化算法(Whale Optimization Algorithm,WOA)优化模糊PID的控制策略。首先,应用LOF与平均值法检测并修正传感器的异常温度值,减小异常值对系统的影响;然后,通过KF对多组传感器数据融合,降低噪音和扰动的影响;最后,采用WOA优化模糊PID,减少对人工经验的依赖并提升温度控制的精准度。通过系统仿真软件验证,本方案与常规PID控制、模糊PID控制相比,调节时间缩短了30.2%和17.3%,超调量减少了2.56%和1.88%,同时在准确性、鲁棒性和扰动过滤方面均显著提升,优化了带钢酸洗过程中的温度控制的整体效果。本研究不仅对保证酸洗过程可持续性、提升生产效率及降低成本具有重要意义,还为其他领域PID控制系统的改进提供了有价值的参考。 展开更多
关键词 带钢酸洗 温度控制 局部离群因子 卡尔曼滤波 鲸鱼优化算法 模糊PID 数据融合
原文传递
基于BPNN-EKF-GD-RF算法的锂离子电池组荷电状态估计方法
7
作者 来鑫 翁嘉辉 +4 位作者 杨一鹏 孙宇飞 周龙 郑岳久 韩雪冰 《机械工程学报》 北大核心 2025年第12期251-265,共15页
锂离子电池模组的荷电状态估计(State-of-charge, SOC)是影响电池性能的一个重要内部状态,是电池组进行其它状态估计的基础。然而它的估计准确性易受温度等外部因素影响,且电池间的不一致性也为电池组中各单体电池的SOC估计带来了困难... 锂离子电池模组的荷电状态估计(State-of-charge, SOC)是影响电池性能的一个重要内部状态,是电池组进行其它状态估计的基础。然而它的估计准确性易受温度等外部因素影响,且电池间的不一致性也为电池组中各单体电池的SOC估计带来了困难。提出一种将BP神经网络(Back propagation neural network, BPNN)与扩展卡尔曼滤波(Extended Kalman filter, EKF)算法相结合的电池组SOC估计方法。该方法首先基于先验SOC利用BPNN估计不同温度下“领导者”电池的端电压,将其与实测端电压对比后采用EKF算法完成SOC后验估计,同时基于电压差采用梯度下降(Gradient descent, GD)算法更新BPNN的输出层权重使算法更快收敛。在此基础上,设计修正策略利用随机森林(Random forest, RF)算法对“跟随者”电池的SOC进行调整估计。试验结果表明,所提的BPNN-EKF-GD-RF算法能实现电池组在不同温度下SOC的准确估计,常温下SOC估计误差保持在2.5%以内,在温度变化下电池组中单体电池SOC估计最大误差不超过3.2%,为复杂环境下锂离子电池组的SOC估计提供了一种高精度低复杂度方案。 展开更多
关键词 SOC估计 BP神经网络 扩展卡尔曼滤波 梯度下降算法 随机森林 锂离子电池组
原文传递
应用于发电机动态状态估计的鲁棒EKF算法
8
作者 靳越 李桢森 +1 位作者 李岩 孙娜 《机械设计与制造》 北大核心 2025年第10期183-187,193,共6页
鉴于现有的滤波算法在处理非线性同步发电机系统的动态状态估计问题时难有满意的滤波效果,这里提出了一种鲁棒扩展卡尔曼滤波(EKF)算法。该算法保留了非线性模型泰勒级数展开式的高阶项,并将其等效为满足范数有界的不确定线性矩阵形式... 鉴于现有的滤波算法在处理非线性同步发电机系统的动态状态估计问题时难有满意的滤波效果,这里提出了一种鲁棒扩展卡尔曼滤波(EKF)算法。该算法保留了非线性模型泰勒级数展开式的高阶项,并将其等效为满足范数有界的不确定线性矩阵形式。基于传统的EKF估计器框架,并使用一系列引理,逐步推导了误差协方差的上界,同时优化设计了合适的滤波器增益使得这样的上界最小以保证最优的滤波性能。提出的鲁棒EKF是一种递推算法,因此可在线应用,计算简便。最后,同步发电机的二阶和三阶模型作为例子以测试提出的估计方法,仿真结果表明,提出的鲁棒EKF算法的估计精度要优于传统的EKF。 展开更多
关键词 同步发电机 非线性系统 动态状态估计 扩展卡尔曼滤波 鲁棒算法
在线阅读 下载PDF
基于SRCKF算法的锂离子电池荷电状态估计
9
作者 肜瑶 张洋洋 吕运朋 《电池》 北大核心 2025年第2期273-278,共6页
为提高荷电状态(SOC)估计的精度,以磷酸铁锂锂离子电池为研究对象,在双极化等效电路模型的基础上,分析容积卡尔曼滤波器(CKF)的SOC估计过程。针对CKF算法发散的问题,采用平方根容积卡尔曼滤波(SRCKF)算法进行电池SOC估计。SRCKF算法通... 为提高荷电状态(SOC)估计的精度,以磷酸铁锂锂离子电池为研究对象,在双极化等效电路模型的基础上,分析容积卡尔曼滤波器(CKF)的SOC估计过程。针对CKF算法发散的问题,采用平方根容积卡尔曼滤波(SRCKF)算法进行电池SOC估计。SRCKF算法通过引入正交三角(QR)分解,误差协方差矩阵在计算过程中以平方根的形式传播,从而确保矩阵的正定和对称。与CKF算法对比发现,SRCKF算法的估计误差为2.0534×10-4 V,说明可以提高SOC估计的精度。 展开更多
关键词 磷酸铁锂锂离子电池 双极化模型 平方根容积卡尔曼滤波(SRCkf)算法 荷电状态(SOC)估计
在线阅读 下载PDF
基于IFFRLS-IMMUKF的商用车磷酸铁锂电池SOC估算
10
作者 吴华伟 何成泽 +3 位作者 洪强 周小高 李明金 顾亚娟 《储能科学与技术》 北大核心 2025年第10期3996-4008,共13页
荷电状态(SOC)作为电动汽车剩余容量的表征参数,它的准确预估可以保障电动汽车的安全可靠性。针对复杂环境下电池SOC难以精确估算的问题,本工作基于动力电池特性构建了等效电路模型,并对电池模型状态方程进行了离散化的推演,在获得离散... 荷电状态(SOC)作为电动汽车剩余容量的表征参数,它的准确预估可以保障电动汽车的安全可靠性。针对复杂环境下电池SOC难以精确估算的问题,本工作基于动力电池特性构建了等效电路模型,并对电池模型状态方程进行了离散化的推演,在获得离散化状态方程的基础上,将金豺优化算法与遗忘因子递推最小二乘法(FFRLS)相结合提出了改进遗忘递推最小二乘法对电池模型进行了参数辨识。同时,联合交互式多模型无迹卡尔曼滤波(IMMUKF)算法对电池SOC进行估算,并在对常温和高温条件下的动态应力(DST)和联邦城市驾驶工况(FUDS)进行试验验证。结果表明,基于IFFRLS-IMMUKF的锂电池SOC估算方法,其平均绝对值误差在0.8%之内,对磷酸铁锂电池有较高的SOC估算精度。 展开更多
关键词 金豺优化算法 遗忘因子递推最小二乘法 交互式多模型无迹卡尔曼滤波 荷电状态
在线阅读 下载PDF
基于DAUKF的锂离子电池SOC和SOE估算
11
作者 朱锦 李珊珊 张阿香 《电池》 北大核心 2025年第3期456-462,共7页
电荷状态(SOC)和能量状态(SOE)估算有助于延长锂离子电池的电池寿命和确保系统可靠性。提出一种双自适应无迹卡尔曼滤波(DAUKF)算法,同时估算SOC和SOE,在动态应力测试(DST)动态驾驶曲线、US06动态驾驶曲线和联邦城市驾驶时间表(FUDS)动... 电荷状态(SOC)和能量状态(SOE)估算有助于延长锂离子电池的电池寿命和确保系统可靠性。提出一种双自适应无迹卡尔曼滤波(DAUKF)算法,同时估算SOC和SOE,在动态应力测试(DST)动态驾驶曲线、US06动态驾驶曲线和联邦城市驾驶时间表(FUDS)动态驾驶曲线下,进行验证。DAUKF算法能准确估算SOC和SOE,SOC的均方根误差(RMSE)分别为0.07%、0.29%和0.31%,SOE的RMSE分别为0.07%、0.30%和0.31%。与自适应无迹卡尔曼滤波(AUKF)算法相比,DAUKF算法在估计精度上表现更优。 展开更多
关键词 锂离子电池 双自适应无迹卡尔曼滤波(DAUkf)算法 状态估计 电荷状态(SOC) 能量状态(SOE)
在线阅读 下载PDF
融合改进的Camshift与Kalman滤波的复杂环境下隔震支座位移测量研究
12
作者 杜永峰 熊小桥 +2 位作者 范宁 韩博 李虎 《地震工程学报》 北大核心 2025年第4期767-780,共14页
为解决传统的Camshift算法在隔震工程应用时过度依赖颜色信息、易受周围环境干扰的问题,提出一种基于视觉的隔震支座位移测量方法。首先,对采集到的视频进行图像预处理。然后,通过调节由Canny算子获取的目标边缘信息和由Camshift算法得... 为解决传统的Camshift算法在隔震工程应用时过度依赖颜色信息、易受周围环境干扰的问题,提出一种基于视觉的隔震支座位移测量方法。首先,对采集到的视频进行图像预处理。然后,通过调节由Canny算子获取的目标边缘信息和由Camshift算法得到的颜色信息的权重,生成融合信息直方图,从而增强算法在目标跟踪时的稳定性。当目标未被遮挡时,直接使用改进的Camshift算法来获取目标位置;当目标发生遮挡时,通过目标被遮挡面积判断遮挡程度,引入Kalman增益来预测目标位置,将预测和观测结果融合后得到目标新的位置状态估计。随后,通过坐标转换获取真实位移信息。该方法准确性通过三层钢框架结构模型的振动台试验得以验证,结果表明,采用视觉方法测量与拉线式位移计测量的结果所得最大位移误差均小于6.84%,两者相关性也均在0.91之上。最后,将该视觉方法应用到某实际工程中,通过对比一个监测点视觉位移测量与拉线式位移计的数据,发现二者误差值仅为0.15 mm,精度达到了98.56%,进一步表明该方法能够适应光照变化、灰尘和遮挡等复杂的隔震层环境,具有良好的准确性和鲁棒性。 展开更多
关键词 隔震支座位移 CAMSHIFT算法 kalman滤波 复杂环境
在线阅读 下载PDF
基于VMD-KF联合的激光测量直线度中空气扰动抑制方法研究
13
作者 郭正刚 常富 +2 位作者 牛宇鸣 郝婉秀 邹玮 《制造业自动化》 2025年第11期32-39,共8页
针对激光直线度测量中空气扰动引起的激光准直信号高频随机抖动与低频漂移问题,提出一种基于变分模态分解-卡尔曼滤波(VMD-KF)的联合抑制方法。VMD通过频域分解精准分离并剔除受空气扰动影响的较高频率模态,而KF基于状态空间模型实时跟... 针对激光直线度测量中空气扰动引起的激光准直信号高频随机抖动与低频漂移问题,提出一种基于变分模态分解-卡尔曼滤波(VMD-KF)的联合抑制方法。VMD通过频域分解精准分离并剔除受空气扰动影响的较高频率模态,而KF基于状态空间模型实时跟踪补偿低频漂移。开展了在人为制造空气扰动条件下所提方法对空气扰动的影响抑制实验。实验表明:在400 mm传输距离下,该方法使水平/竖直方向激光准直信号的标准差分别降低了47%和46%。有效抑制了激光直线度测量中的空气随机扰动对直线测量基准的影响。 展开更多
关键词 激光准直 直线度测量 空气扰动 变分模态分解 卡尔曼滤波
在线阅读 下载PDF
Nonlinear Bayesian Estimation: From Kalman Filtering to a Broader Horizon 被引量:12
14
作者 Huazhen Fang Ning Tian +2 位作者 Yebin Wang Meng Chu Zhou Mulugeta A. Haile 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期401-417,共17页
This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades o... This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades of research effort. To date,one of the most promising and popular approaches is to view and address the problem from a Bayesian probabilistic perspective,which enables estimation of the unknown state variables by tracking their probabilistic distribution or statistics(e.g., mean and covariance) conditioned on a system's measurement data.This article offers a systematic introduction to the Bayesian state estimation framework and reviews various Kalman filtering(KF)techniques, progressively from the standard KF for linear systems to extended KF, unscented KF and ensemble KF for nonlinear systems. It also overviews other prominent or emerging Bayesian estimation methods including Gaussian filtering, Gaussian-sum filtering, particle filtering and moving horizon estimation and extends the discussion of state estimation to more complicated problems such as simultaneous state and parameter/input estimation. 展开更多
关键词 Index Terms-kalman filtering kf nonlinear Bayesian esti-mation state estimation stochastic estimation.
在线阅读 下载PDF
Multi-sensor Hybrid Fusion Algorithm Based on Adaptive Square-root Cubature Kalman Filter 被引量:6
15
作者 Xiaogong Lin Shusheng Xu Yehai Xie 《Journal of Marine Science and Application》 2013年第1期106-111,共6页
In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate r... In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms. 展开更多
关键词 hybrid fusion algorithm square-root cubature kalman filter adaptive filter fault detection
在线阅读 下载PDF
Adaptive Fault Estimation for Dynamics of High Speed Train Based on Robust UKF Algorithm 被引量:1
16
作者 Kexin Li Tiantian Liang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第1期61-72,共12页
This paper proposes an adaptive unscented Kalman filter algorithm(ARUKF)to implement fault estimation for the dynamics of high⁃speed train(HST)with measurement uncertainty and time⁃varying noise with unknown statistic... This paper proposes an adaptive unscented Kalman filter algorithm(ARUKF)to implement fault estimation for the dynamics of high⁃speed train(HST)with measurement uncertainty and time⁃varying noise with unknown statistics.Firstly,regarding the actuator and sensor fault as the auxiliary variables of the dynamics of HST,an augmented system is established,and the fault estimation problem for dynamics of HST is formulated as the state estimation of the augmented system.Then,considering the measurement uncertainties,a robust lower bound is proposed to modify the update of the UKF to decrease the influence of measurement uncertainty on the filtering accuracy.Further,considering the unknown time⁃varying noise of the dynamics of HST,an adaptive UKF algorithm based on moving window is proposed to estimate the time⁃varying noise so that accurate concurrent actuator and sensor fault estimations of dynamics of HST is implemented.Finally,a five-car model of HST is given to show the effectiveness of this method. 展开更多
关键词 high speed train kalman filter adaptive algorithm robust algorithm unknown noise measurement uncertainty
在线阅读 下载PDF
基于EKF-HInformer模型估计汽车动力电池的SOC&SOH 被引量:2
17
作者 彭自然 杨肖阳 肖伸平 《电子测量与仪器学报》 北大核心 2025年第3期21-33,共13页
针对传统模型荷电状态(SOC)和健康状态(SOH)估计精度低、鲁棒性差的问题,提出一种基于扩展卡尔曼滤波(EKF)和深度学习模型Informer改进优化的估计模型EKF-HInformer,实现电动汽车动力电池SOC与SOH的实时精准估计。首先,运用EKF算法归一... 针对传统模型荷电状态(SOC)和健康状态(SOH)估计精度低、鲁棒性差的问题,提出一种基于扩展卡尔曼滤波(EKF)和深度学习模型Informer改进优化的估计模型EKF-HInformer,实现电动汽车动力电池SOC与SOH的实时精准估计。首先,运用EKF算法归一化整理电池实时数据,并通过调整自适应增益因子减少噪声波动,提高EKF数据滤波处理的性能。然后,运用Informer网络模型对归一化后的电池数据进行智能估计。为减少Informer模型离群点或异常值所导致的注意力权重偏差问题,采用Hampel算法对Informer进行优化,提高多头概率稀疏自注意力机制特征学习的能力。最后,把滤波整理后的数据输入到HInformer网络中估算实时的SOC和SOH。采用牛津大学与马里兰大学的电池数据集进行实验验证,结果显示SOC与SOH估计精度均超99.5%,均方根误差(RMSE)小于1%,最大绝对误差(MAXE)小于0.5%。相比传统Informer、Transformer和长短期记忆(LSTM)模型,该模型估计SOC和SOH的速度更快、准确度更高,展现出优越的鲁棒性和泛化能力。 展开更多
关键词 动力电池 荷电状态 健康状态 自适应增益因子 扩展卡尔曼滤波 Hampel优化算法 INFORMER
原文传递
Generalized reliability measures of Kalman filtering for precise point positioning
18
作者 Changhui Xu Xiaoping Rui +1 位作者 Xianfeng Song Jingxiang Gao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期699-705,共7页
To deal with the adverse influence of model failures on Kalman filtering (KF) estimation, it is necessary to investigate the generalized reliability theory, including the model failure detection and identification m... To deal with the adverse influence of model failures on Kalman filtering (KF) estimation, it is necessary to investigate the generalized reliability theory, including the model failure detection and identification method as well as the separability and reliability theories. Although the generalized reliability theory for the least square has been discussed for many decades, the generalized reliability theory of KF is not widely discussed. Compared with the least square, KF includes not only the measurement model, but also the dynamic model. In KF, the predicted value of the state parameters from the dynamic model is considered as pseudomeasurements and combined with the observed measurements to compose the form of the least square. According to the reliability of the least square, the generalized reliability of KF is derived. Then, the dynamic model failure of precise point positioning is simulated to demonstrate the usage of the generalized reliability theory. The results show that the adverse influence of the dynamic model failure is more severe than that of the measurement model. Moreover, it is recommended that the model failure identification should always be used even if the overall model test passes. It is shown that the derived generalized reliability measures are suitable for the generalized KF estimation. 展开更多
关键词 kalman filtering kf RELIABILITY SEPARABILITY failure detection failure identification.
在线阅读 下载PDF
TEC and Instrumental Bias Estimation of GAGAN Station Using Kalman Filter and SCORE Algorithm 被引量:1
19
作者 Dhiraj Sunehra 《Positioning》 2016年第1期41-50,共10页
The standalone Global Positioning System (GPS) does not meet the higher accuracy requirements needed for approach and landing phase of an aircraft. To meet the Category-I Precision Approach (CAT-I PA) requirements of ... The standalone Global Positioning System (GPS) does not meet the higher accuracy requirements needed for approach and landing phase of an aircraft. To meet the Category-I Precision Approach (CAT-I PA) requirements of civil aviation, satellite based augmentation system (SBAS) has been planned by various countries including USA, Europe, Japan and India. The Indian SBAS is named as GPS Aided Geo Augmented Navigation (GAGAN). The GAGAN network consists of several dual frequency GPS receivers located at various airports around the Indian subcontinent. The ionospheric delay, which is a function of the total electron content (TEC), is one of the main sources of error affecting GPS/SBAS accuracy. A dual frequency GPS receiver can be used to estimate the TEC. However, line-of-sight TEC derived from dual frequency GPS data is corrupted by the instrumental biases of the GPS receiver and satellites. The estimation of receiver instrumental bias is particularly important for obtaining accurate estimates of ionospheric delay. In this paper, two prominent techniques based on Kalman filter and Self-Calibration Of pseudo Range Error (SCORE) algorithm are used for estimation of instrumental biases. The estimated instrumental bias and TEC results for the GPS Aided Geo Augmented Navigation (GAGAN) station at Hyderabad (78.47°E, 17.45°N), India are presented. 展开更多
关键词 GPS Aided Geo Augmented Navigation Total Electron Content Instrumental Biases kalman Filter Score algorithm
在线阅读 下载PDF
Widely linear UKF constant modulus algorithm for blind adaptive beamforming
20
作者 Huaming Qian Ke Liu +2 位作者 Long Li Linchen Qian Junda Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期413-423,共11页
Based on a uniform linear array, a new widely linear unscented Kalman filter-based constant modulus algorithm (WL-UKF-CMA) for blind adaptive beamforming is proposed. The new algorithm is designed according to the con... Based on a uniform linear array, a new widely linear unscented Kalman filter-based constant modulus algorithm (WL-UKF-CMA) for blind adaptive beamforming is proposed. The new algorithm is designed according to the constant modulus criterion and takes full advantage of the noncircular property of the signal of interest (SOI), significantly increasing the output signal-to interference-plus-noise ratio (SINR), enhancing the convergence speed and decreasing the steady-state misadjustment. Since it requires no known training data, the proposed algorithm saves a large amount of the available spectrum. Theoretical analysis and simulation results are presented to demonstrate its superiority over the conventional linear least mean square-based CMA (L-LMS-CMA), the conventional linear recursive least square-based CMA (L-RLS-CMA), WL-LMS-CMA, WL-RLS-CMA and L-UKF-CMA. 展开更多
关键词 widely linear filtering blind beamforming noncircular signals constant modulus algorithm unscented kalman filtering
在线阅读 下载PDF
上一页 1 2 99 下一页 到第
使用帮助 返回顶部