期刊文献+
共找到1,818篇文章
< 1 2 91 >
每页显示 20 50 100
Stability analysis of distributed Kalman filtering algorithm for stochastic regression model
1
作者 Siyu Xie Die Gan Zhixin Liu 《Control Theory and Technology》 2025年第2期161-175,共15页
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi... The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example. 展开更多
关键词 Distributed kalman filtering algorithm Stochastic cooperative information condition Sensor networks (L_(p))-exponential stability Stochastic regression model
原文传递
Short-term Wind Power Forecasting Using Interval A2-C1 Type-2 TSK FLS Method with Extended Kalman Filter Algorithm
2
作者 Jun Li Mingdi Miao 《Chinese Journal of Electrical Engineering》 2025年第3期191-215,共25页
For short-term wind power forecasting,an interval A2-C1 type-2(IT2)Takagi-Sugeno-Kang(TSK)fuzzy logic system(FLS)method(“A”means antecedent and“C”consequent)based on an extended Kalman filter(EKF)optimization algo... For short-term wind power forecasting,an interval A2-C1 type-2(IT2)Takagi-Sugeno-Kang(TSK)fuzzy logic system(FLS)method(“A”means antecedent and“C”consequent)based on an extended Kalman filter(EKF)optimization algorithm is proposed.Compared with the type-1(T1)FLS model,the IT2 TSK FLS method can simultaneously model both intra-and inter-individual uncertainty and further optimize the antecedent and consequent parameters using the EKF to improve forecasting performance further.The proposed IT2 A2-C1 FLS method is applied to Mackey-Glass chaotic time series and wind power forecasting instances in a certain region,under the same conditions.It is also compared with the T1 TSK FLS and IT2 TSK FLS methods with back propagation(BP)and particle swarm optimization(PSO)algorithms,as well as IT2 A2-C0 TSK FLS methods with EKF.The experimental results confirm that the proposed IT2 A2-C1 FLS method is superior to the other FLS methods regarding performance,which demonstrates its effectiveness and application potential. 展开更多
关键词 Wind power forecasting interval type-2 TSK fuzzy logic system extended kalman filter(EKF)algorithm A2-C1
原文传递
Stability and performance analysis of the compressed Kalman filter algorithm for sparse stochastic systems 被引量:2
3
作者 LI RongJiang GAN Die +1 位作者 XIE SiYu LüJinHu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第2期380-394,共15页
This paper considers the problem of estimating unknown sparse time-varying signals for stochastic dynamic systems.To deal with the challenges of extensive sparsity,we resort to the compressed sensing method and propos... This paper considers the problem of estimating unknown sparse time-varying signals for stochastic dynamic systems.To deal with the challenges of extensive sparsity,we resort to the compressed sensing method and propose a compressed Kalman filter(KF)algorithm.Our algorithm first compresses the original high-dimensional sparse regression vector via the sensing matrix and then obtains a KF estimate in the compressed low-dimensional space.Subsequently,the original high-dimensional sparse signals can be well recovered by a reconstruction technique.To ensure stability and establish upper bounds on the estimation errors,we introduce a compressed excitation condition without imposing independence or stationarity on the system signal,and therefore suitable for feedback systems.We further present the performance of the compressed KF algorithm.Specifically,we show that the mean square compressed tracking error matrix can be approximately calculated by a linear deterministic difference matrix equation,which can be readily evaluated,analyzed,and optimized.Finally,a numerical example demonstrates that our algorithm outperforms the standard uncompressed KF algorithm and other compressed algorithms for estimating high-dimensional sparse signals. 展开更多
关键词 sparse signal compressed sensing kalman filter algorithm compressed excitation condition stochastic stability tracking performance
原文传递
Research on Kalman Filtering Algorithmfor Deformation Information Series ofSimilar Single-Difference Model 被引量:10
4
作者 吕伟才 徐绍铨 《Journal of China University of Mining and Technology》 2004年第2期189-194,199,共7页
Using similar single-difference methodology(SSDM) to solve the deformation values of the monitoring points, there is unstability of the deformation information series, at sometimes.In order to overcome this shortcomin... Using similar single-difference methodology(SSDM) to solve the deformation values of the monitoring points, there is unstability of the deformation information series, at sometimes.In order to overcome this shortcoming, Kalman filtering algorithm for this series is established,and its correctness and validity are verified with the test data obtained on the movable platform in plane. The results show that Kalman filtering can improve the correctness, reliability and stability of the deformation information series. 展开更多
关键词 similar single-difference methodology GPS deformation monitoring single epoch deformation information series kalman filtering algorithm
在线阅读 下载PDF
Multi-sensor Hybrid Fusion Algorithm Based on Adaptive Square-root Cubature Kalman Filter 被引量:6
5
作者 Xiaogong Lin Shusheng Xu Yehai Xie 《Journal of Marine Science and Application》 2013年第1期106-111,共6页
In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate r... In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms. 展开更多
关键词 hybrid fusion algorithm square-root cubature kalman filter adaptive filter fault detection
在线阅读 下载PDF
TEC and Instrumental Bias Estimation of GAGAN Station Using Kalman Filter and SCORE Algorithm 被引量:1
6
作者 Dhiraj Sunehra 《Positioning》 2016年第1期41-50,共10页
The standalone Global Positioning System (GPS) does not meet the higher accuracy requirements needed for approach and landing phase of an aircraft. To meet the Category-I Precision Approach (CAT-I PA) requirements of ... The standalone Global Positioning System (GPS) does not meet the higher accuracy requirements needed for approach and landing phase of an aircraft. To meet the Category-I Precision Approach (CAT-I PA) requirements of civil aviation, satellite based augmentation system (SBAS) has been planned by various countries including USA, Europe, Japan and India. The Indian SBAS is named as GPS Aided Geo Augmented Navigation (GAGAN). The GAGAN network consists of several dual frequency GPS receivers located at various airports around the Indian subcontinent. The ionospheric delay, which is a function of the total electron content (TEC), is one of the main sources of error affecting GPS/SBAS accuracy. A dual frequency GPS receiver can be used to estimate the TEC. However, line-of-sight TEC derived from dual frequency GPS data is corrupted by the instrumental biases of the GPS receiver and satellites. The estimation of receiver instrumental bias is particularly important for obtaining accurate estimates of ionospheric delay. In this paper, two prominent techniques based on Kalman filter and Self-Calibration Of pseudo Range Error (SCORE) algorithm are used for estimation of instrumental biases. The estimated instrumental bias and TEC results for the GPS Aided Geo Augmented Navigation (GAGAN) station at Hyderabad (78.47°E, 17.45°N), India are presented. 展开更多
关键词 GPS Aided Geo Augmented Navigation Total Electron Content Instrumental Biases kalman filter Score algorithm
在线阅读 下载PDF
Assimilation of Remote Sensing and Crop Model for LAI Estimation Based on Ensemble Kalman Filter 被引量:4
7
作者 LI Rui LI Cun-jun +4 位作者 DONG Ying-ying LIU Feng WANG Ji-hua YANG Xiao-dong PAN Yu-chun 《Agricultural Sciences in China》 CAS CSCD 2011年第10期1595-1602,共8页
Data assimilation in agricultural remote sensing research is of great significance to integrate with remote sensing observations and model simulations for parameters estimation. The present investigation not only desi... Data assimilation in agricultural remote sensing research is of great significance to integrate with remote sensing observations and model simulations for parameters estimation. The present investigation not only designed and realized the Ensemble Kalman Filtering algorithm (EnKF) assimilation by combing the crop growth model (CERES-Wheat) with remote sensing data, but also optimized and updated the key parameters (LAI) of winter wheat by using remote sensing data. Results showed that the assimilation LAI and the observation ones agreed with each other, and the R2 reached 0.8315. So assimilation remote sensing and crop model could provide reference data for the agricultural production. 展开更多
关键词 crop model ASSIMILATION Ensemble kalman filter algorithm leaf area index
在线阅读 下载PDF
NONLINEAR FILTER METHOD OF GPS DYNAMIC POSITIONING BASED ON BANCROFT ALGORITHM 被引量:3
8
作者 ZHANG Qin TAO Ben-zao +1 位作者 ZHAO Chao-ying WANG Li 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第2期170-176,共7页
Because of the ignored items after linearization,the extended Kalman filter(EKF)becomes a form of suboptimal gradient descent algorithm.The emanative tendency exists in GPS solution when the filter equations are ill-p... Because of the ignored items after linearization,the extended Kalman filter(EKF)becomes a form of suboptimal gradient descent algorithm.The emanative tendency exists in GPS solution when the filter equations are ill-posed.The deviation in the estimation cannot be avoided.Furthermore,the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions.To solve the above problems in GPS dynamic positioning by using EKF,a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American.The method separates the spatial parts from temporal parts during processing the GPS filter problems,and solves the nonlinear GPS dynamic positioning,thus getting stable and reliable dynamic positioning solutions. 展开更多
关键词 GPS dynamic positioning Bancroft algorithm extended kalman filter algorithm
在线阅读 下载PDF
融合改进的Camshift与Kalman滤波的复杂环境下隔震支座位移测量研究
9
作者 杜永峰 熊小桥 +2 位作者 范宁 韩博 李虎 《地震工程学报》 北大核心 2025年第4期767-780,共14页
为解决传统的Camshift算法在隔震工程应用时过度依赖颜色信息、易受周围环境干扰的问题,提出一种基于视觉的隔震支座位移测量方法。首先,对采集到的视频进行图像预处理。然后,通过调节由Canny算子获取的目标边缘信息和由Camshift算法得... 为解决传统的Camshift算法在隔震工程应用时过度依赖颜色信息、易受周围环境干扰的问题,提出一种基于视觉的隔震支座位移测量方法。首先,对采集到的视频进行图像预处理。然后,通过调节由Canny算子获取的目标边缘信息和由Camshift算法得到的颜色信息的权重,生成融合信息直方图,从而增强算法在目标跟踪时的稳定性。当目标未被遮挡时,直接使用改进的Camshift算法来获取目标位置;当目标发生遮挡时,通过目标被遮挡面积判断遮挡程度,引入Kalman增益来预测目标位置,将预测和观测结果融合后得到目标新的位置状态估计。随后,通过坐标转换获取真实位移信息。该方法准确性通过三层钢框架结构模型的振动台试验得以验证,结果表明,采用视觉方法测量与拉线式位移计测量的结果所得最大位移误差均小于6.84%,两者相关性也均在0.91之上。最后,将该视觉方法应用到某实际工程中,通过对比一个监测点视觉位移测量与拉线式位移计的数据,发现二者误差值仅为0.15 mm,精度达到了98.56%,进一步表明该方法能够适应光照变化、灰尘和遮挡等复杂的隔震层环境,具有良好的准确性和鲁棒性。 展开更多
关键词 隔震支座位移 CAMSHIFT算法 kalman滤波 复杂环境
在线阅读 下载PDF
A novel strong tracking cubature Kalman filter and its application in maneuvering target tracking 被引量:28
10
作者 An ZHANG Shuida BAO +1 位作者 Fei GAO Wenhao BI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第11期2489-2502,共14页
The fading factor exerts a significant role in the strong tracking idea. However, traditional fading factor introduction method hinders the accuracy and robustness advantages of current strong-tracking-based nonlinear... The fading factor exerts a significant role in the strong tracking idea. However, traditional fading factor introduction method hinders the accuracy and robustness advantages of current strong-tracking-based nonlinear filtering algorithms such as Cubature Kalman Filter(CKF) since traditional fading factor introduction method only considers the first-order Taylor expansion. To this end, a new fading factor idea is suggested and introduced into the strong tracking CKF method.The new fading factor introduction method expanded the number of fading factors from one to two with reselected introduction positions. The relationship between the two fading factors as well as the general calculation method can be derived based on Taylor expansion. Obvious superiority of the newly suggested fading factor introduction method is demonstrated according to different nonlinearity of the measurement function. Equivalent calculation method can also be established while applied to CKF. Theoretical analysis shows that the strong tracking CKF can extract the thirdorder term information from the residual and thus realize second-order accuracy. After optimizing the strong tracking algorithm process, a Fast Strong Tracking CKF(FSTCKF) is finally established. Two simulation examples show that the novel FSTCKF improves the robustness of traditional CKF while minimizing the algorithm time complexity under various conditions. 展开更多
关键词 algorithm time complexity Cubature kalman filter Nonlinear filtering ROBUSTNESS Strong tracking filter
原文传递
Real-time localization estimator of mobile node in wireless sensor networks based on extended Kalman filter
11
作者 田金鹏 郑国莘 《Journal of Shanghai University(English Edition)》 CAS 2011年第2期128-131,共4页
Localization of the sensor nodes is a key supporting technology in wireless sensor networks (WSNs). In this paper, a real-time localization estimator of mobile node in WSNs based on extended Kalman filter (KF) is ... Localization of the sensor nodes is a key supporting technology in wireless sensor networks (WSNs). In this paper, a real-time localization estimator of mobile node in WSNs based on extended Kalman filter (KF) is proposed. Mobile node movement model is analyzed and online sequential iterative method is used to compute location result. The detailed steps of mobile sensor node self-localization adopting extended Kalman filter (EKF) is designed. The simulation results show that the accuracy of the localization estimator scheme designed is better than those of maximum likelihood estimation (MLE) and traditional KF algorithm. 展开更多
关键词 wireless sensor networks (WSNs) node location localization algorithm kalman filter (KF)
在线阅读 下载PDF
代理模型和Kalman滤波偏差估计增强的个性化差分进化算法
12
作者 孙晓燕 李帅 金耀初 《控制理论与应用》 北大核心 2025年第11期2386-2396,共11页
基于用户交互的进化优化算法可有效提高个性化推荐的性能,但已有研究忽略了编码个体与解码样本间的偏差,往往导致算法搜索方向出现较大偏离,搜索效率低;此外,用户交互评价的定量化表示也是较大挑战.针对此,本文提出了融合Kalman滤波偏... 基于用户交互的进化优化算法可有效提高个性化推荐的性能,但已有研究忽略了编码个体与解码样本间的偏差,往往导致算法搜索方向出现较大偏离,搜索效率低;此外,用户交互评价的定量化表示也是较大挑战.针对此,本文提出了融合Kalman滤波偏差估计和代理模型的个性化差分进化算法.首先,构建了基于用户评价、商品属性等的深度信念网络代理模型,实现对用户交互的定量评价;然后,设计Kalman滤波偏差估计器,跟踪进化过程中基因型和表现型之间的偏差,并基于该偏差设计差分进化算子,改变种群分布并引导搜索方向;最后,将该算法应用于亚马逊个性化搜索数据集,验证了其有效性. 展开更多
关键词 个性化搜索 差分进化算法 kalman滤波器 代理模型 偏差估计
在线阅读 下载PDF
Kalman滤波算法在外测数据处理中的应用研究
13
作者 娄广国 顾梓仪 +3 位作者 曹怡 何定坤 李杨 赵军杰 《电子技术应用》 2025年第12期62-66,共5页
在应用Kalman滤波算法对测量数据进行实时处理时,常采用调整滤波增益矩阵的方法解决滤波发散问题。在实时数据处理中,不能通过后验方式确定调整滤波增益矩阵的增益系数,需要设计一种针对数据的自适应确定方法。通过检验数据序列的误差特... 在应用Kalman滤波算法对测量数据进行实时处理时,常采用调整滤波增益矩阵的方法解决滤波发散问题。在实时数据处理中,不能通过后验方式确定调整滤波增益矩阵的增益系数,需要设计一种针对数据的自适应确定方法。通过检验数据序列的误差特性,调整滤波记忆衰减步长,确定滤波记忆衰减系数,采用tanh函数计算增益系数。仿真结果表明,采用自适应增益系数的Kalman滤波算法能够较好地适应常见测量数据,可以应用于测量数据的实时处理。 展开更多
关键词 kalman滤波 自适应 增益系数
在线阅读 下载PDF
Kalman算法在纯电动汽车SOC估算中的应用误差分析 被引量:16
14
作者 温家鹏 姜久春 +1 位作者 文锋 张维戈 《汽车工程》 EI CSCD 北大核心 2010年第3期188-192,227,共6页
针对纯电动汽车电池组的工作状态和输出特性,分析了模型参数的变化对Kalman算法估算精度的影响。指出了纯电动汽车应用Kalman滤波算法估算SOC应考虑的因素,并结合电池模型参数的变化提出了Kal-man方程修正方案。最后通过电池的城市工况... 针对纯电动汽车电池组的工作状态和输出特性,分析了模型参数的变化对Kalman算法估算精度的影响。指出了纯电动汽车应用Kalman滤波算法估算SOC应考虑的因素,并结合电池模型参数的变化提出了Kal-man方程修正方案。最后通过电池的城市工况模拟试验,验证了分析的正确和可行性。 展开更多
关键词 纯电动汽车 kalman滤波算法 电池组 SOC估算 模型参数
在线阅读 下载PDF
基于季节模型及Kalman滤波的道路行程时间 被引量:8
15
作者 孙健 张纯 +2 位作者 陈书恺 薛睿 彭仲仁 《长安大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第6期145-151,共7页
道路行程时间是影响城市交通出行行为的重要因素。当前大多数出行时间研究基于路段进行,假设驾驶人沿着理想最短路径或最快路径行驶,难以对交叉口排队延误等相关时间参数进行精确估计。针对城市任意OD间的出行时间进行分析,采用Kalman... 道路行程时间是影响城市交通出行行为的重要因素。当前大多数出行时间研究基于路段进行,假设驾驶人沿着理想最短路径或最快路径行驶,难以对交叉口排队延误等相关时间参数进行精确估计。针对城市任意OD间的出行时间进行分析,采用Kalman滤波方法,利用历史数据对总行程时间进行有效预测。鉴于总行程时间分布存在比较明显的周期性特点,单一Kalman滤波算法难以反映出这种周期性,引入基于季节模型的Kalman滤波算法进行建模和优化。最后,利用深圳浮动车2011年12月连续3d的数据进行实证。研究结果表明:相对于传统的SARIMA模型及普通Kalman滤波算法,优化模型同时考虑总行程时间分布的周期性和时变性,具有较小误差及更好的拟合度;所得预测时间的平均绝对误差(MAE)分别在传统SARIMA模型及普通Kalman滤波算法结果基础上降低了37%和52%,其余误差指标,如均方根误差(RMSE)及最大相对误差(MRE)均有较大下降,从而证明了研究模型的有效性。 展开更多
关键词 交通工程 城市交通 总行程时间预测 季节时间序列 kalman滤波算法 浮动车数据
原文传递
一种快速Kalman滤波算法实现及效果评估 被引量:9
16
作者 李彦鹏 黎湘 庄钊文 《电子与信息学报》 EI CSCD 北大核心 2005年第1期153-154,共2页
该文介绍了一种新的快速Kalman滤波算法实现方法。对于某些不能够采取离线计算的滤波过程来说,它可以在保证一定精度的同时极大地提高计算速度和减少计算占用资源。文中以仿真实验的跟踪数据做出了对比仿真。
关键词 kalman滤波 算法
在线阅读 下载PDF
时变系统的Laguerre模型辨识及设计变量(2)——Kalman滤波法 被引量:4
17
作者 丁肇红 沙泉 袁震东 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第1期25-30,共6页
 文章考虑动态线性系统的时变参数是平稳的AR(1)变量,系统为时变的Laguerre模型时的传递函数估计的均方误差(MSE)。在缓慢时变和高阶模型下,利用Kalman滤波算法,得到MSE的近似表达式。最后得到了Kalman滤波算法的设计变量的最优解。
关键词 时变系统 MSE Laguerre模型 kalman滤波算法 设计变量
在线阅读 下载PDF
HSV颜色空间特征与Kalman滤波融合的目标跟踪 被引量:13
18
作者 范五东 周尚波 辛培宸 《计算机工程与应用》 CSCD 北大核心 2011年第13期169-173,共5页
为了克服噪声、遮挡、背景的改变等对目标识别带来的困难,出现了很多的跟踪算法。提出了一种基于HSV色彩空间的目标跟踪融合算法,即在较短时间内,将目标的运动看作一时不变系统,引入卡尔曼滤波进行参数辨识,使得跟踪系统具有后续状态预... 为了克服噪声、遮挡、背景的改变等对目标识别带来的困难,出现了很多的跟踪算法。提出了一种基于HSV色彩空间的目标跟踪融合算法,即在较短时间内,将目标的运动看作一时不变系统,引入卡尔曼滤波进行参数辨识,使得跟踪系统具有后续状态预测的能力。算法包括均值漂移算法跟踪下利用卡尔曼滤波对后续状态预测和基于卡尔曼滤波状态估计的Bhattacharyya系数分析两个子过程,整个跟踪过程分两个子过程交替执行。对不同的视频序列测试的结果表明,算法能够对目标进行持续、稳健的跟踪。验证了新方法的有效性和准确性。 展开更多
关键词 色彩空间转换 目标跟踪 均值漂移 卡尔曼滤波 算法融合
在线阅读 下载PDF
Kalman滤波融合优化Mean Shift的目标跟踪算法 被引量:7
19
作者 韩涛 吴衡 +3 位作者 张虎龙 侯海啸 邹强 张兴国 《光电工程》 CAS CSCD 北大核心 2014年第6期56-62,共7页
目标跟踪中,目标的背景变化、形状改变、遮挡,往往会导致跟踪失败,而跟踪的实时性和准确性是必须考虑的问题。本文首先对Mean Shift算法进行了介绍,接着对Mean Shift算法进行了优化:修正Mean Shift算法迭代权值,修正后主要信息贡献更加... 目标跟踪中,目标的背景变化、形状改变、遮挡,往往会导致跟踪失败,而跟踪的实时性和准确性是必须考虑的问题。本文首先对Mean Shift算法进行了介绍,接着对Mean Shift算法进行了优化:修正Mean Shift算法迭代权值,修正后主要信息贡献更加突出,次要信息受到抑制,避免了开方的繁琐运算,降低了运算量。提出了目标模板更新算法,解决了背景变化和目标形状改变时跟踪失败的问题。然后在水平位置和竖直位置建立Kalman滤波器,同时将优化Mean Shift算法与Kalman滤波融合,解决了目标完全遮挡后无法继续跟踪的问题。仿真实验表明,本文提出的目标跟踪算法在目标遮挡,目标形状改变,目标跟踪失败的情况下具有更高的跟踪精度,更高的实时性和鲁棒性。 展开更多
关键词 kalman滤波 Mean SHIFT算法 目标跟踪 模板更新
在线阅读 下载PDF
结合SURF与Kalman滤波的CAMShift跟踪算法 被引量:12
20
作者 张磊 彭力 《电子测量与仪器学报》 CSCD 北大核心 2017年第3期389-394,共6页
针对传统的CAMShift目标跟踪算法,在出现颜色干扰,遮挡等复杂背景中容易跟丢的问题,提出了一种结合SURF特征匹配与Kalman滤波的CAMShift跟踪算法。该算法利用CAMShift算法跟踪得到的候选目标与模板目标的色度和梯度方向的综合直方图比... 针对传统的CAMShift目标跟踪算法,在出现颜色干扰,遮挡等复杂背景中容易跟丢的问题,提出了一种结合SURF特征匹配与Kalman滤波的CAMShift跟踪算法。该算法利用CAMShift算法跟踪得到的候选目标与模板目标的色度和梯度方向的综合直方图比较计算得到的Bhattacharyya系数作为判定依据,当系数大于给定阈值时,采用SURF算法对搜索窗口和上一帧跟踪结果进行特征匹配,重新计算目标的大小和位置。同时为了避免目标快速运动时跟踪失败和减少SURF匹配的计算量,利用Kalman滤波对运动目标窗口进行预测更新以确定下一帧搜索窗口的中心位置。实验表明,该算法在图像背景复杂,出现颜色干扰以及部分遮挡时能够稳定跟踪,其跟踪速度与结合SURF的CAMShift算法相比有显著提高。 展开更多
关键词 目标跟踪 CAMSHIFT算法 kalman滤波 SURF算法 BHATTACHARYYA系数
在线阅读 下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部