期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
实双截曲率、Miyaoka-Yau不等式和Kahler-Ricci流(英文) 被引量:1
1
作者 汤凯 《数学进展》 CSCD 北大核心 2019年第5期620-626,共7页
为了把Wu-Yau理论([Invent. Math.,2016,204(2):595-604])推广到Hermitian情形,在文献[Trans.Amer. Math. Soc.,2019,371(4):2703-2718]中,杨晓奎和郑方阳在Hermitian流形上引进了实双截曲率的概念.本文证明:如果(X,h)是一个有非正实双... 为了把Wu-Yau理论([Invent. Math.,2016,204(2):595-604])推广到Hermitian情形,在文献[Trans.Amer. Math. Soc.,2019,371(4):2703-2718]中,杨晓奎和郑方阳在Hermitian流形上引进了实双截曲率的概念.本文证明:如果(X,h)是一个有非正实双截曲率的紧Hermitian流形,并且义上面还存在一个Kahler度量,那么Miyaoka-Yau不等式成立.另外,当Hermitian度量的实双截曲率有正的上界时,我们能给出Kahler-Ricci流的解的存在区间估计. 展开更多
关键词 Miyaoka-Yau不等式 实双截曲率 kahler-ricci
原文传递
The twisted conical Kahler-Ricci solitons on Fano manifolds
2
作者 Xishen Jin Jiawei Liu 《Science China Mathematics》 SCIE CSCD 2024年第5期1085-1102,共18页
In this paper,we show the relation between the existence of twisted conical K?hler-Ricci solitons and the greatest log Bakry-Emery-Ricci lower bound on Fano manifolds.This is based on our proofs of some openness theor... In this paper,we show the relation between the existence of twisted conical K?hler-Ricci solitons and the greatest log Bakry-Emery-Ricci lower bound on Fano manifolds.This is based on our proofs of some openness theorems on the existence of twisted conical Kahler-Ricci solitons,which generalize Donaldson’s existence conjecture and the openness theorem of the conical K?hler-Einstein metrics to the conical soliton case. 展开更多
关键词 greatest log Bakry-Emery-Ricci lower bound twisted conical kahler-ricci soliton twisted kahler-ricci soliton
原文传递
Uniformly strong convergence of Kahler-Ricci flows on a Fano manifold
3
作者 Feng Wang Xiaohua Zhu 《Science China Mathematics》 SCIE CSCD 2022年第11期2337-2370,共34页
In this paper,we study the uniformly strong convergence of the Kahler-Ricci flow on a Fano manifold with varied initial metrics and smoothly deformed complex structures.As an application,we prove the uniqueness of Kah... In this paper,we study the uniformly strong convergence of the Kahler-Ricci flow on a Fano manifold with varied initial metrics and smoothly deformed complex structures.As an application,we prove the uniqueness of Kahler-Ricci solitons in the sense of diffeomorphism orbits.The result generalizes Tian-Zhu’s theorem for the uniqueness of of Kahler-Ricci solitons on a compact complex manifold,and it is also a generalization of Chen-Sun’s result of the uniqueness of Kahler-Einstein metric orbits. 展开更多
关键词 kahler-ricci flow K¨ahler-Ricci solitons Q-Fano variety Gromov-Hausdorff topology
原文传递
On the Kahler-Ricci Flow on Projective Manifolds of General Type 被引量:5
4
作者 Gang TIAN Zhou ZHANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2006年第2期179-192,共14页
This note concerns the global existence and convergence of the solution for Kahler-Ricci flow equation when the canonical class, Kx, is numerically effective and big. We clarify some known results regarding this flow ... This note concerns the global existence and convergence of the solution for Kahler-Ricci flow equation when the canonical class, Kx, is numerically effective and big. We clarify some known results regarding this flow on projective manifolds of general type and also show some new observations and refined results. 展开更多
关键词 Geometric evolution equations Minimal model program
原文传递
A NOTE ON CONICAL KHLER-RICCI FLOW ON MINIMAL ELLIPTIC KHLER SURFACES 被引量:3
5
作者 张雅山 《Acta Mathematica Scientia》 SCIE CSCD 2018年第1期169-176,共8页
We prove that, under a semi-ampleness type assumption on the twisted canonical line bundle, the conical Kahler-Ricci flow on a minimal elliptic Kahler surface converges in the sense of currents to a generalized conica... We prove that, under a semi-ampleness type assumption on the twisted canonical line bundle, the conical Kahler-Ricci flow on a minimal elliptic Kahler surface converges in the sense of currents to a generalized conical Kahler-Einstein on its canonical model. Moreover, the convergence takes place smoothly outside the singular fibers and the chosen divisor. 展开更多
关键词 conical kahler-ricci flow Kahler-Einstein metric minimal elliptic surface
在线阅读 下载PDF
具有常Ricci特征值的Khler流形的一个分解定理
6
作者 李兴校 齐学荣 《数学进展》 CSCD 北大核心 2009年第4期409-416,共8页
本文把黎曼流形的Ricci张量的特征值,也就是Ricci主曲率,称为Ricci特征值。考虑具有常Ricci特征值的K(a|¨)hler流形的局部de Rham分解定理问题是非常有趣的。本文给出了具有常Ricci特征值的K(a|¨)hler流形分解成K(a|¨)hl... 本文把黎曼流形的Ricci张量的特征值,也就是Ricci主曲率,称为Ricci特征值。考虑具有常Ricci特征值的K(a|¨)hler流形的局部de Rham分解定理问题是非常有趣的。本文给出了具有常Ricci特征值的K(a|¨)hler流形分解成K(a|¨)hler-Einstein流形的直积的充分条件。 展开更多
关键词 KAHLER流形 Ricci特征值 近Kahler结构 Kahler—Einstein流形
原文传递
Tensor-Centric Warfare IV:Kahler Dynamics of Battlefields 被引量:1
7
作者 Vladimir Ivancevic Darryn Reid Peyam Pourbeik 《Intelligent Control and Automation》 2018年第4期123-146,共24页
This paper presents the complex dynamics synthesis of the combat dy-namics series called tensor-centric warfare (TCW;for the first three parts of the series, see [1] [2] [3]), which includes tensor generalization of c... This paper presents the complex dynamics synthesis of the combat dy-namics series called tensor-centric warfare (TCW;for the first three parts of the series, see [1] [2] [3]), which includes tensor generalization of classical Lanchester-type combat equations, entropic Lie-dragging and commutators for modeling warfare uncertainty and symmetry, and various delta-strikes and missiles (both deterministic and random). The present paper gives a unique synthesis of the Red vs. Blue vectorfields into a single complex battle-vectorfield, using dynamics on K&#228;hler manifolds as a rigorous framework for extending the TCW concept. The global K&#228;hler dynamics framework, with its rigorous underpinning called the K&#228;hler-Ricci flow, provides not only a new insight into the “geometry of warfare”, but also into the “physics of warfare”, in terms of Lagrangian and Hamiltonian structures of the battlefields. It also provides a convenient and efficient computational framework for entropic wargaming. 展开更多
关键词 Tensor-Centric Warfare Kahler Geometry Complex Battle-Vectorfield Lagrangian and Hamiltonian Battlefields kahler-ricci Flow Entropic Computational Wargaming
在线阅读 下载PDF
ON SOME ROTATIONALLY SYMMETRIC GRADIENT PSEUDO-KHLER-RICCI SOLITONS
8
作者 段孝娟 《Acta Mathematica Scientia》 SCIE CSCD 2018年第1期269-288,共20页
In this paper, we explicitly construct some rotationally symmetric gradient pseudo- Kahler-Ricci solitons which depend on some parameters, on some line bundles and other bundles over projective spaces. We also discuss... In this paper, we explicitly construct some rotationally symmetric gradient pseudo- Kahler-Ricci solitons which depend on some parameters, on some line bundles and other bundles over projective spaces. We also discuss the "phase change" phenomenon caused by the variation of parameters. 展开更多
关键词 pseudo-kahler-ricci soliton rotationally symmetric phase change gradient soliton
在线阅读 下载PDF
Kahler流形上有关Bakry-Emery曲率的Schur引理(英文)
9
作者 黄广月 《数学杂志》 2018年第2期214-216,共3页
本文研究了K(a|¨)hler流形上有关Bakry-Emery曲率的Schur引理.即在K(a|¨)hler流形上考虑方程R_(ij)+f_(ij)=λg_(ij),其中f,λ是光滑实值函数.利用Bianchi恒等式,得到了λ是常数.
关键词 KAHLER流形 Schur引理 K(a|¨)hler-Ricci孤立子
在线阅读 下载PDF
一类Hartogs域的Einstein-Khler度量和Kobayashi度量的比较定理 被引量:2
10
作者 叶薇薇 王安 《数学年刊(A辑)》 CSCD 北大核心 2012年第6期687-704,共18页
研究了一类Hartogs域Ω,得到了该域上Einstein-Khler度量生成函数的隐式解和在某些参数情况下完备的Einstein-Khler度量显式表达式,且给出了该域上Einstein-Khler度量和Kobayashi度量的比较定理.
关键词 Einstein-Khler度量 RICCI曲率 全纯截曲率 比较定理
在线阅读 下载PDF
ON THE KHLER-RICCI SOLITONS WITH VANISHING BOCHNER-WEYL TENSOR 被引量:3
11
作者 苏延辉 张坤 《Acta Mathematica Scientia》 SCIE CSCD 2012年第3期1239-1244,共6页
In this article, we study the steady, shrinking, and expanding Kahler-Ricci solitons with vanishing Bochner-Weyl tensor and prove that, under this condition, the Ricci solitons must have constant holomorphic sectional... In this article, we study the steady, shrinking, and expanding Kahler-Ricci solitons with vanishing Bochner-Weyl tensor and prove that, under this condition, the Ricci solitons must have constant holomorphic sectional curvature. 展开更多
关键词 Ricci flow Kahler Ricci soliton Bochner-Weyl tensor
在线阅读 下载PDF
李奇曲率平行的Kahler流形的孤立现象
12
作者 夏巧玲 《四川大学学报(自然科学版)》 CAS CSCD 1994年第1期20-26,共7页
证明了李奇曲率平行的Kahler流形上的黎曼曲率的Pinching定理。
关键词 李奇曲率 凯勒流形 孤立现象
在线阅读 下载PDF
Khler-Ricci流下带有位能的热方程的微分Harnack不等式 被引量:3
13
作者 方守文 叶斐 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第3期597-606,共10页
主要研究了在Khler-Ricci流下的Khler流形上具有位能热方程的微分Harnack不等式,并利用它们得到了对应的W泛函和F泛函的单调性.
关键词 HARNACK不等式 kahler-ricci 热方程
原文传递
An Equivariant Version of the K-energy
14
作者 GangTIAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第1期1-8,共8页
In this note, we present a connection between equivariant Bott–Chern classesand K?hler–Ricci solitons. We also propose a generalized version the of the K–energy.
关键词 Kahler–Ricci soliton Bott–Chern class K–energy
原文传递
The Khler-Ricci Flow on Khler Manifolds with 2-Non-negative Traceless Bisectional Curvature Operator
15
作者 Xiuxiong CHEN Haozhao LI 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2008年第5期543-556,共14页
The authors show that the 2-non-negative traceless bisectional curvature is preserved along the Kahler-Ricci flow. The positivity of Ricci curvature is also preserved along the Kahler-Ricci flow with 2-non-negative tr... The authors show that the 2-non-negative traceless bisectional curvature is preserved along the Kahler-Ricci flow. The positivity of Ricci curvature is also preserved along the Kahler-Ricci flow with 2-non-negative traceless bisectional curvature. As a corol- lary, the Kahler-Ricci flow with 2-non-negative traceless bisectional curvature will converge to a Kahler-Ricci soliton in the sense of Cheeger-Cromov-Hausdorff topology if complex dimension n ≥ 3. 展开更多
关键词 Kaihler-Ricci flow 2-Non-negative bisectional curvature
原文传递
Real hypersurfaces in the complex quadric with commuting Ricci tensor
16
作者 SUH YoungJin HWANG DooHyun 《Science China Mathematics》 SCIE CSCD 2016年第11期2185-2198,共14页
We introduce the notion of commuting Ricci tensor for real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2. It is shown that the commuting Ricci tensor gives that the unit normal vector field N becomes -princ... We introduce the notion of commuting Ricci tensor for real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2. It is shown that the commuting Ricci tensor gives that the unit normal vector field N becomes -principal or -isotropic. Then according to each case, we give a complete classification of Hopf real hypersurfaces in Qm = SOm+2/SOmSO2 with commuting Ricci tensor. 展开更多
关键词 commuting Ricci tensor -isotropic -principal Kahler structure complex conjugation complex quadric
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部