期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
转弯和直行场景下驾驶员认知分心识别的研究
1
作者 曾娟 许博 +1 位作者 王昊 张洪昌 《汽车技术》 北大核心 2025年第3期8-14,共7页
为了探寻转弯和直行场景下驾驶员分心驾驶的内在机理,通过驾驶模拟器搭建直行与转弯虚拟场景,采集驾驶员不同驾驶状态的驾驶绩效和眼动信息数据,并使用KNNImputer算法对设备在采集过程中缺失的数据进行插补处理;通过配对样本T检验对时... 为了探寻转弯和直行场景下驾驶员分心驾驶的内在机理,通过驾驶模拟器搭建直行与转弯虚拟场景,采集驾驶员不同驾驶状态的驾驶绩效和眼动信息数据,并使用KNNImputer算法对设备在采集过程中缺失的数据进行插补处理;通过配对样本T检验对时间长度为1 s、重叠率为75%的时间窗口提取的样本数据进行显著性差异分析并提取特征指标;基于该特征指标集合,采用XGBoost分类器构建不同场景下的认知分心识别模型。试验结果表明:相比于直行场景,驾驶员在转弯场景中瞳孔直径变化频率更小、扫视速度更高、注视时间百分比更大,脑力负荷更大;构建的认知分心识别模型在直行场景下的准确率达到91.30%,转弯场景下的准确率为83.28%,转弯场景下认知分心行为危险程度更高,识别更加困难。 展开更多
关键词 转弯场景 直行场景 认知分心 knnimputer XGBoost
在线阅读 下载PDF
Improving Prediction of Chronic Kidney Disease Using KNN Imputed SMOTE Features and TrioNet Model
2
作者 Nazik Alturki Abdulaziz Altamimi +5 位作者 Muhammad Umer Oumaima Saidani Amal Alshardan Shtwai Alsubai Marwan Omar Imran Ashraf 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3513-3534,共22页
Chronic kidney disease(CKD)is a major health concern today,requiring early and accurate diagnosis.Machine learning has emerged as a powerful tool for disease detection,and medical professionals are increasingly using ... Chronic kidney disease(CKD)is a major health concern today,requiring early and accurate diagnosis.Machine learning has emerged as a powerful tool for disease detection,and medical professionals are increasingly using ML classifier algorithms to identify CKD early.This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California,UC Irvine Machine Learning repository.The research introduces TrioNet,an ensemble model combining extreme gradient boosting,random forest,and extra tree classifier,which excels in providing highly accurate predictions for CKD.Furthermore,K nearest neighbor(KNN)imputer is utilized to deal withmissing values while synthetic minority oversampling(SMOTE)is used for class-imbalance problems.To ascertain the efficacy of the proposed model,a comprehensive comparative analysis is conducted with various machine learning models.The proposed TrioNet using KNN imputer and SMOTE outperformed other models with 98.97%accuracy for detectingCKD.This in-depth analysis demonstrates the model’s capabilities and underscores its potential as a valuable tool in the diagnosis of CKD. 展开更多
关键词 Precisionmedicine chronic kidney disease detection SMOTE missing values healthcare knnimputer ensemble learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部