The secondary cell wall(SCW)is essential for plant growth and development in vascular plants,and its biosynthesis is mainly controlled by a complex hierarchical regulatory network involving multiple transcription fact...The secondary cell wall(SCW)is essential for plant growth and development in vascular plants,and its biosynthesis is mainly controlled by a complex hierarchical regulatory network involving multiple transcription factors(TFs)at the transcription level.However,TFs that specifically regulate secondary xylem have not been widely reported.In this study,we described a poplar KNOTTED1-like homeobox(KNOX)TF PtoKNAT3a1,which was mainly expressed in the expanding xylem cells of stems.PtoKNAT3a1 overexpression caused fiber SCW thickening and increased all measured SCW compositions by upregulating the expression of SCW-biosynthetic genes and-associated TFs,but had no effect on the vessels of SCW.The opposite phenotype was observed in the PtoKNAT3a1-knockout lines.Hence,we further demonstrated that Pto-KNAT3a1 could physically interact with the NAC master switches PtoWND2A/3A to enhance the expression of downstream MYB TFs and SCW biosynthetic genes(including PtoMYB20,PtoMYB21,PtoMYB90,PtoCoMT2,PtoGT43B and PtoCesA8).Meanwhile,the studies also demonstrate that the KNAT3 has functional differentiation in xylem development.Taken together,these data suggest that the KNAT3a1-WND2A/3A module positively regulates fiber development of the secondary xylem in poplar via the WND2A/3A-mediated hierarchical regulatory network,and supplies useful information for fiber SCW formation.The research not only deepens the understanding of the hierarchical regulatory network affecting SCW formation but also supplies genetic resources and molecular targets for plant fiber utilization.展开更多
The KNAT1 gene is a member of the Class I KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the ...The KNAT1 gene is a member of the Class I KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the architecture of the inflorescence by affecting pedicle development in Arabidopsis thaliana. Herein, we report the characterization of an Arabidopsis T-DNA insertion mutant that shares considerable phenotypic similarity to the previously identified mutant brevipedicle (bp). Molecular and genetic analyses showed that the mutant is allelic to bp and that the T-DNA is located within the first helix of the KNAT1 homeodomain (HD). Although the mutation causes a typical abnormality of short pedicles, propendent siliques, and semidwarfism, no obvious defects are observed in the vegetative stage. A study on cell morphology showed that asymmetrical division and inhibition of cell elongation contribute to the downward-pointing and shorter pedicle phenotype. Loss of KNAT/BPfunction results in the abnormal development of abscission zones. Mlcroarray analysis of gene expression profiling suggests that KNAT1/BP may regulate abscission zone development through hormone signaling and hormone metabolism in Arabidopsis.展开更多
基金supported by grants from the Biological Breeding-National Science and Technology Major Project(Grant No.2023ZD0406803)the National Key Research and Development Program(Grant No.2021YFD2200204)+2 种基金the National Science Foundation of China(Grant No.32071791 and 32271835)the Chongqing Youth Top Talent Program(Grant No.CQYC201905028)Fundamental Research Funds for the Central Universities(Grant No.XDJK2020B036).
文摘The secondary cell wall(SCW)is essential for plant growth and development in vascular plants,and its biosynthesis is mainly controlled by a complex hierarchical regulatory network involving multiple transcription factors(TFs)at the transcription level.However,TFs that specifically regulate secondary xylem have not been widely reported.In this study,we described a poplar KNOTTED1-like homeobox(KNOX)TF PtoKNAT3a1,which was mainly expressed in the expanding xylem cells of stems.PtoKNAT3a1 overexpression caused fiber SCW thickening and increased all measured SCW compositions by upregulating the expression of SCW-biosynthetic genes and-associated TFs,but had no effect on the vessels of SCW.The opposite phenotype was observed in the PtoKNAT3a1-knockout lines.Hence,we further demonstrated that Pto-KNAT3a1 could physically interact with the NAC master switches PtoWND2A/3A to enhance the expression of downstream MYB TFs and SCW biosynthetic genes(including PtoMYB20,PtoMYB21,PtoMYB90,PtoCoMT2,PtoGT43B and PtoCesA8).Meanwhile,the studies also demonstrate that the KNAT3 has functional differentiation in xylem development.Taken together,these data suggest that the KNAT3a1-WND2A/3A module positively regulates fiber development of the secondary xylem in poplar via the WND2A/3A-mediated hierarchical regulatory network,and supplies useful information for fiber SCW formation.The research not only deepens the understanding of the hierarchical regulatory network affecting SCW formation but also supplies genetic resources and molecular targets for plant fiber utilization.
基金Supported by the National Natural Science Foundation of China (30330040 and 30221002).
文摘The KNAT1 gene is a member of the Class I KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the architecture of the inflorescence by affecting pedicle development in Arabidopsis thaliana. Herein, we report the characterization of an Arabidopsis T-DNA insertion mutant that shares considerable phenotypic similarity to the previously identified mutant brevipedicle (bp). Molecular and genetic analyses showed that the mutant is allelic to bp and that the T-DNA is located within the first helix of the KNAT1 homeodomain (HD). Although the mutation causes a typical abnormality of short pedicles, propendent siliques, and semidwarfism, no obvious defects are observed in the vegetative stage. A study on cell morphology showed that asymmetrical division and inhibition of cell elongation contribute to the downward-pointing and shorter pedicle phenotype. Loss of KNAT/BPfunction results in the abnormal development of abscission zones. Mlcroarray analysis of gene expression profiling suggests that KNAT1/BP may regulate abscission zone development through hormone signaling and hormone metabolism in Arabidopsis.