期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Interface defect induced upgrade of K-storage properties in KFeSO4Fcathode: From lowered Fe-3d orbital energy level to advancedpotassium-ion batteries
1
作者 Yan Liu Zhen-Yi Gu +7 位作者 Yong-Li Heng Jin-Zhi Guo Miao Du Hao-Jie Liang Jia-Lin Yang Kai-Yang Zhang Kai Li Xing-Long Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1724-1733,共10页
KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the ele... KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the electron/ion transfer by tuning electronic structure,thus providing favorable electrochemical performance.Herein,through the regulation of surface defect engineering in reduced graphene oxide(rGO),the Fe–C bonds were formed between KFSF and rGO.The Fe–C bonds formed work in regulating the Fe-3d orbital as well as promoting the migration ability of K ions and increasing the electronic conductivity of KFSF.Thus,the KFSF@rGO delivers a high capacity of 119.6 mAh g^(-1).When matched with a graphite@pitch-derived S-doped carbon anode,the full cell delivers an energy density of 250.5 Wh kg^(-1) and a capacity retention of 81.5%after 400 cycles.This work offers a simple and valid method to develop high-performance cathodes by tuning defect sites. 展开更多
关键词 Potassium-ion batteries CATHODE Defect chemistry kfeso4f Fe–C bond
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部