A solid ternary mixture consisting of NaF,silicon and one metal oxide such as La2O3,CeO2,Pr6O11,Nd2O3,and Y2O3 was prepared and usedas de-fluorinated reagent for CF4 decomposition.The results show that 90% conversion ...A solid ternary mixture consisting of NaF,silicon and one metal oxide such as La2O3,CeO2,Pr6O11,Nd2O3,and Y2O3 was prepared and usedas de-fluorinated reagent for CF4 decomposition.The results show that 90% conversion of CF4 can be reached initially over NaF-Si-La2O3,NaF-Si-CeO2,NaF-Si-Nd2O3,and NaF-Si-Y2O3 at 850 C.The fresh and used reagents were characterized using XRD and XPS techniques.It was found that the active components of NaF and metal oxides in NaF-Si-CeO2,NaF-Si-Pr6O11,NaF-Si-Nd2O3,and NaF-Si-Y2O3 weretransformed into inert phases of mixed metal fluorides and silicates,respectively,resulting in an ineffective utilization of these de-fluorinatedreagents,whereas no inert phases from NaF and La2O3 can be observed in the used NaF-Si-La2O3,indicating the NaF-Si-La2O3 reagent couldbe utilized more efficiently than the other reagents in CF4 decomposition.展开更多
Alumina supports modified by lanthanum (La) and barium (Ba) were prepared by peptization. Catalysts with different KOH contents supported on modified alumina were prepared by impregnation method. Various technique...Alumina supports modified by lanthanum (La) and barium (Ba) were prepared by peptization. Catalysts with different KOH contents supported on modified alumina were prepared by impregnation method. Various techniques, including N2 adsorption-desorption (Brunauer-Emmet-Teller method, BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), and fourier transform infrared absorption spectroscopy (FT-IR). Catalytic activity for microalgae oil conversion to methyl ester via transesterification was evaluated and analyzed by GC-MS and GC. BET results showed that the support possessed high specific surface area, suitable pore volume and pore size distribution. Activity results indicated that the catalyst with 25 wt% KOH showed the best activity for microalgae oil conversion. XRD and SEM results revealed that Al-O-K compound was the active phase for microalgae oil conversion. The agglomeration and changing of pore structure should be the main reasons for the catalyst deactivation when KOH content was higher than 30 wt%.展开更多
Complete oxidation of benzene over supported manganese oxides catalysts was studied.Composite supports Ce0.5+xZr0.4–xLa0.1O1.95-Al2O3 (x=0,0.1,0.2,0.3,0.4),and CeO2-Al2O3 were prepared by co-precipitation method,a...Complete oxidation of benzene over supported manganese oxides catalysts was studied.Composite supports Ce0.5+xZr0.4–xLa0.1O1.95-Al2O3 (x=0,0.1,0.2,0.3,0.4),and CeO2-Al2O3 were prepared by co-precipitation method,and manganese oxides (MnOx) catalysts were prepared by incipient wetness method.Catalytic activity was performed in a conventional fixed bed flow reactor.Among these catalysts,MnOx supported on Ce0.8Zr0.1La0.1O1.95-Al2O3 was found to have the highest catalytic activity for benzene oxidation.The complete conversion temperature of benzene on MnOx/Ce0.8Zr0.1La0.1O1.95-Al2O3 was 328 oC.The catalysts were characterized by X-ray diffraction (XRD),Brunauer-Emmett-Teller (BET) specific surface area,X-ray photoelectron spectra (XPS) and H2-temperature programmed reduction (H2-TPR).The results of BET and XRD measurements indicated that the addition of ZrO2 improved the textural properties.XPS measurements showed that MnOx was composed of MnO2 and Mn2O3.The catalysts reported in this work have significant potential in industrial application for their high performance and low cost.展开更多
Single crystals of huntite type double borates possess excellent physical and chemical properties and are applied in laser optics.Substituted with various rare earths and Ga 3+ ,Cr 3+ or Sc 3+ ions the properties of t...Single crystals of huntite type double borates possess excellent physical and chemical properties and are applied in laser optics.Substituted with various rare earths and Ga 3+ ,Cr 3+ or Sc 3+ ions the properties of these borates can be improved. [1] For the first time double borates RGa 3(BO 3) 4(R=Y 3+ ,Sm 3+ ,Eu 3+ ,Gd 3+ ,Tb 3+ and Dy 3+ )were synthesised by Blasse and Bril [2] at 750℃. The goal of the present work is to study the solid state reactions in the R 2O 3∶3Ga 2O 3∶4B 2O 3(R=La 3+ ,Y 3+ ,Ho 3+ ,Yb 3+ )systems.Such reactions can lead to RGa 3(BO 3) 4 formation. Reagent grade oxide powders were used as reactants and mixed together in desired rations in acetone.Then differential thermal analysis(DTA)was used to study the formations of borates and changes in structure of mixtures heated up to 1000℃.In addition pellets were prepared by using 15mPa pressure and sintered at different temperatures from 600℃ to 1100℃ for 20 hours in order to study the reactions by IR and X ray.展开更多
Effects of SO2 in ambient air on the performance and durability of solid oxide fuel cell(SOFC) cathode were evaluated by galvanostatic measurement. Comparison between two cathode materials was made to consider the c...Effects of SO2 in ambient air on the performance and durability of solid oxide fuel cell(SOFC) cathode were evaluated by galvanostatic measurement. Comparison between two cathode materials was made to consider the cathode degradation mechanisms. The degradation performance is associated with a slow decomposition of the La0.6Sr0.4Co0.2Fe0.8O3(LSCF) due to the segregation of strontium oxide. Negligible deterioration for (La0.7Sr0.3)MnO3 (LSM) cathode was caused by SO2 poisoning under a current density of 200 mA/cm2. Metal sulphate formation may explain a slight deterioration under increasing high the concentration of SO2. It was verified that the poisoning mechanism for the two cathode materials resulted from the gradual decomposition of the cathode materials.展开更多
MgO/Al2O3 and Fe2O3/MgO/Al2O3 solid bases were prepared through mixing method. After sulfonated cobalt phthalocyanine (CoPcS) being supported on these solid bases, the catalytic performance of these catalysts was ev...MgO/Al2O3 and Fe2O3/MgO/Al2O3 solid bases were prepared through mixing method. After sulfonated cobalt phthalocyanine (CoPcS) being supported on these solid bases, the catalytic performance of these catalysts was evaluated by means of mercaptan oxidation reaction. The samples were characterized by X-ray diffraction (XRD), CO2 temperature-programmed desorption (CO2-TPD), FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS). Investigation was focused on the effect of Fe2O3 on activity, crystal structure, basicity, and stability of the catalyst and also on the role of Fe2O3 in the mercaptan oxidation processes. Test results have shown that the Fe2O3/MgO/Al2O3- CoPcS catalyst has a higher initial activity and a much longer service life than the MgO/Al2O3-CoPcS catalyst. The increased types of basic sites coupled with an enhanced oxidation ability resulted from the addition of Fe2O3 have contributed to the improvement of the catalytic activity of the MgO/Al2O3-CoPcS catalyst.展开更多
A novel electrochemical oxygen sensor has been developed by using La beta -Al2O3 as solid electrolyte and Cr+Cr2O3 as reference electrode. The sensor not only can be used as normal oxygen sensor but also as an ultra-l...A novel electrochemical oxygen sensor has been developed by using La beta -Al2O3 as solid electrolyte and Cr+Cr2O3 as reference electrode. The sensor not only can be used as normal oxygen sensor but also as an ultra-low oxygen sensor. Especially, it is very sensitive to measure ultra-low oxygen in molten metal. For estimating the accuracy of La beta -Al2O3 oxygen sensor, two series of oxygen activities in molten iron at different oxygen contents and different temperature were measured by both La beta -Al2O3 oxygen sensor and ZrO2 oxygen sensor. The theoretical values of oxygen activities in molten iron (3.30%C, in mass fraction) at 1723K and 1745K were also evaluated for comparing the measuring results of two sensors. At last, the error of measurement for La beta -Al2O3 oxygen sensor was discussed too.展开更多
基金supported by the National Natural Science Foundation of China (No. 20976149)
文摘A solid ternary mixture consisting of NaF,silicon and one metal oxide such as La2O3,CeO2,Pr6O11,Nd2O3,and Y2O3 was prepared and usedas de-fluorinated reagent for CF4 decomposition.The results show that 90% conversion of CF4 can be reached initially over NaF-Si-La2O3,NaF-Si-CeO2,NaF-Si-Nd2O3,and NaF-Si-Y2O3 at 850 C.The fresh and used reagents were characterized using XRD and XPS techniques.It was found that the active components of NaF and metal oxides in NaF-Si-CeO2,NaF-Si-Pr6O11,NaF-Si-Nd2O3,and NaF-Si-Y2O3 weretransformed into inert phases of mixed metal fluorides and silicates,respectively,resulting in an ineffective utilization of these de-fluorinatedreagents,whereas no inert phases from NaF and La2O3 can be observed in the used NaF-Si-La2O3,indicating the NaF-Si-La2O3 reagent couldbe utilized more efficiently than the other reagents in CF4 decomposition.
基金supported by the Institute of Chemical Materials Foundation of CAEP(No.626010937)
文摘Alumina supports modified by lanthanum (La) and barium (Ba) were prepared by peptization. Catalysts with different KOH contents supported on modified alumina were prepared by impregnation method. Various techniques, including N2 adsorption-desorption (Brunauer-Emmet-Teller method, BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), and fourier transform infrared absorption spectroscopy (FT-IR). Catalytic activity for microalgae oil conversion to methyl ester via transesterification was evaluated and analyzed by GC-MS and GC. BET results showed that the support possessed high specific surface area, suitable pore volume and pore size distribution. Activity results indicated that the catalyst with 25 wt% KOH showed the best activity for microalgae oil conversion. XRD and SEM results revealed that Al-O-K compound was the active phase for microalgae oil conversion. The agglomeration and changing of pore structure should be the main reasons for the catalyst deactivation when KOH content was higher than 30 wt%.
基金Project supported by the National Natural Science Foundation of China (20773090)the National High Technology Research and Development Program of China (863 Program, 2006AA06Z347)the Youth Fund of Sichuan University (2008119)
文摘Complete oxidation of benzene over supported manganese oxides catalysts was studied.Composite supports Ce0.5+xZr0.4–xLa0.1O1.95-Al2O3 (x=0,0.1,0.2,0.3,0.4),and CeO2-Al2O3 were prepared by co-precipitation method,and manganese oxides (MnOx) catalysts were prepared by incipient wetness method.Catalytic activity was performed in a conventional fixed bed flow reactor.Among these catalysts,MnOx supported on Ce0.8Zr0.1La0.1O1.95-Al2O3 was found to have the highest catalytic activity for benzene oxidation.The complete conversion temperature of benzene on MnOx/Ce0.8Zr0.1La0.1O1.95-Al2O3 was 328 oC.The catalysts were characterized by X-ray diffraction (XRD),Brunauer-Emmett-Teller (BET) specific surface area,X-ray photoelectron spectra (XPS) and H2-temperature programmed reduction (H2-TPR).The results of BET and XRD measurements indicated that the addition of ZrO2 improved the textural properties.XPS measurements showed that MnOx was composed of MnO2 and Mn2O3.The catalysts reported in this work have significant potential in industrial application for their high performance and low cost.
文摘Single crystals of huntite type double borates possess excellent physical and chemical properties and are applied in laser optics.Substituted with various rare earths and Ga 3+ ,Cr 3+ or Sc 3+ ions the properties of these borates can be improved. [1] For the first time double borates RGa 3(BO 3) 4(R=Y 3+ ,Sm 3+ ,Eu 3+ ,Gd 3+ ,Tb 3+ and Dy 3+ )were synthesised by Blasse and Bril [2] at 750℃. The goal of the present work is to study the solid state reactions in the R 2O 3∶3Ga 2O 3∶4B 2O 3(R=La 3+ ,Y 3+ ,Ho 3+ ,Yb 3+ )systems.Such reactions can lead to RGa 3(BO 3) 4 formation. Reagent grade oxide powders were used as reactants and mixed together in desired rations in acetone.Then differential thermal analysis(DTA)was used to study the formations of borates and changes in structure of mixtures heated up to 1000℃.In addition pellets were prepared by using 15mPa pressure and sintered at different temperatures from 600℃ to 1100℃ for 20 hours in order to study the reactions by IR and X ray.
基金Supported by the National Natural Science Foundation of China(No.50872041)the Research Funds of Industrial Technology Research and Development Projects of Jilin Province, China(No.JF2012C024)+1 种基金the Natural Science Foundation of Jilin Province,China(No.201215109)the Science and Technology Research Projects of Education Department of Jilin Province, China(No.2011205)
文摘Effects of SO2 in ambient air on the performance and durability of solid oxide fuel cell(SOFC) cathode were evaluated by galvanostatic measurement. Comparison between two cathode materials was made to consider the cathode degradation mechanisms. The degradation performance is associated with a slow decomposition of the La0.6Sr0.4Co0.2Fe0.8O3(LSCF) due to the segregation of strontium oxide. Negligible deterioration for (La0.7Sr0.3)MnO3 (LSM) cathode was caused by SO2 poisoning under a current density of 200 mA/cm2. Metal sulphate formation may explain a slight deterioration under increasing high the concentration of SO2. It was verified that the poisoning mechanism for the two cathode materials resulted from the gradual decomposition of the cathode materials.
文摘MgO/Al2O3 and Fe2O3/MgO/Al2O3 solid bases were prepared through mixing method. After sulfonated cobalt phthalocyanine (CoPcS) being supported on these solid bases, the catalytic performance of these catalysts was evaluated by means of mercaptan oxidation reaction. The samples were characterized by X-ray diffraction (XRD), CO2 temperature-programmed desorption (CO2-TPD), FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS). Investigation was focused on the effect of Fe2O3 on activity, crystal structure, basicity, and stability of the catalyst and also on the role of Fe2O3 in the mercaptan oxidation processes. Test results have shown that the Fe2O3/MgO/Al2O3- CoPcS catalyst has a higher initial activity and a much longer service life than the MgO/Al2O3-CoPcS catalyst. The increased types of basic sites coupled with an enhanced oxidation ability resulted from the addition of Fe2O3 have contributed to the improvement of the catalytic activity of the MgO/Al2O3-CoPcS catalyst.
基金supported by National Natural Science Foundation of China under grant No.59374160.
文摘A novel electrochemical oxygen sensor has been developed by using La beta -Al2O3 as solid electrolyte and Cr+Cr2O3 as reference electrode. The sensor not only can be used as normal oxygen sensor but also as an ultra-low oxygen sensor. Especially, it is very sensitive to measure ultra-low oxygen in molten metal. For estimating the accuracy of La beta -Al2O3 oxygen sensor, two series of oxygen activities in molten iron at different oxygen contents and different temperature were measured by both La beta -Al2O3 oxygen sensor and ZrO2 oxygen sensor. The theoretical values of oxygen activities in molten iron (3.30%C, in mass fraction) at 1723K and 1745K were also evaluated for comparing the measuring results of two sensors. At last, the error of measurement for La beta -Al2O3 oxygen sensor was discussed too.