Some characterizations of preregular operators between two Banach lattices are presented. Then several sufficient conditions for preregular operators being regular are given, and some related results are also obtained.
We present here that F(E,F), the space of all r-compact operators from E into F, is a generalised sublattice of L^r(E, F) for arbitary Banach lattices E and F, and that the characterization of the regular norm on ...We present here that F(E,F), the space of all r-compact operators from E into F, is a generalised sublattice of L^r(E, F) for arbitary Banach lattices E and F, and that the characterization of the regular norm on F(E, F) is order continuous. Some conditions for F(E, F) to be a KB-space or a band in .L(E, F) are also provided.展开更多
文摘Some characterizations of preregular operators between two Banach lattices are presented. Then several sufficient conditions for preregular operators being regular are given, and some related results are also obtained.
文摘We present here that F(E,F), the space of all r-compact operators from E into F, is a generalised sublattice of L^r(E, F) for arbitary Banach lattices E and F, and that the characterization of the regular norm on F(E, F) is order continuous. Some conditions for F(E, F) to be a KB-space or a band in .L(E, F) are also provided.