Hierarchical SAPO-11, featuring both micropore and mesopore channels, demonstrates an outstanding performance in high-octane gasoline production. In this work, we propose an economic and effective approach to directly...Hierarchical SAPO-11, featuring both micropore and mesopore channels, demonstrates an outstanding performance in high-octane gasoline production. In this work, we propose an economic and effective approach to directly fabricate hierarchical SAPO-11 molecular sieve from natural kaolin, eliminating the need for mesoporogens. The systematic characterization results show that the kaolin-derived SAPO-11 possesses abundant micro-mesoporous structure and more Brønsted (B) acid sites on the external surface in contrast with the conventional SAPO-11 prepared employing silica sol as silicon source as well as SAPO-11 synthesized with the assist with of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (F127). The analysis of the formation process reveals that the kaolin not only provides silicon source for the SAPO-11 crystal growth, but also offers confined environment for crystal growth along the preferential orientation, resulting in the generation of the microporous and mesoporous structure. Benefiting from these unique properties, the kaolin-derived Pt/SAPO-11 exhibits considerably improved selectivity for di-branched C8 isomers in n-octane hydroisomerization.展开更多
Sediment properties have a crucial effect on the growth and recovery of aquatic plants in lakes.Addition of various chemical substances has been proposed to reinforce the recovery of plants after a nutrient loading re...Sediment properties have a crucial effect on the growth and recovery of aquatic plants in lakes.Addition of various chemical substances has been proposed to reinforce the recovery of plants after a nutrient loading reduction.However,the effects of such sediment amendments on plant growth,especially those from rhizosphere microorganisms,is limited.We added Kaolin clay to sediments in different concentrations to explore its impact on the growth of Vallisneria natans and Ottelia acuminate and the concurrent shift in rhizosphere microorganisms using high-throughput sequencing technology.We found that the addition of low doses(10%and 20%in mass ratio)of Kaolin significantly modified sediment conditions(oxidation reduction potential and pH),with implications also for the composition,diversity,and stability of rhizosphere microorganisms.LEfSe analysis revealed that low-dose addition of Kaolin increased the abundances of functional microbial groups that benefit plant nutrient absorption and enhance plant stress resistance,such as Spirillaceae,Rhodocyclaceae,and Burkholderiales.Moreover,low doses of Kaolin significantly promoted the photosynthesis and nutrient absorption of submerged macrophytes,thereby facilitating plant growth.A structural equation model(SEM)indicated that the direct impact of Kaolin on the growth of submerged plants was relatively minor,while the indirect effect through modulation of rhizosphere microorganisms was important.Our study suggests that low doses of Kaolin may be used to promote the growth of submerged macrophytes when lakes with a high organic content in the sediment are recovering after nutrient loading reduction.展开更多
The process mineralogy of kaolin associated quartz flotation concentrate was studied.The experimental results show that the content of SiO2 in the flotation concentrate is 99.66%,and the main impurity elements in the ...The process mineralogy of kaolin associated quartz flotation concentrate was studied.The experimental results show that the content of SiO2 in the flotation concentrate is 99.66%,and the main impurity elements in the concentrate are Al,Fe,K,and Na.The gangue minerals in the flotation concentrate are mainly mica and feldspar symbiosis with quartz in the form of connexion or mineral inclusion.By taking the flotation concentrate as the raw material,the experimental research on HF concentration,HCl concentration,HNO3 concentration,acid leaching temperature,acid leaching time,and the leaching liquid solid ratio of hot pressing acid leaching conditions was carried out.Finally,the factors affecting the quality of purified products were analyzed.Through the acid leaching experiment,it can be seen that hydrofluoric acid has a greater effect on Al and Fe elements,hydrochloric acid has a greater effect on Fe elements,and nitric acid concentration has a smaller effect on impurity elements(which can also be confirmed from the thermodynamic analysis);the acid leaching temperature,the acid leaching time,and the leaching liquid solid mass ratio are proportional to the acid leaching effect.The Al content decreases from 1304.73 to 214.10μg/g,and the aluminum removal rate is 86.12%.The Fe content decreases from 39.35 to 3.72μg/g,and the iron removal rate is 90.55%.Thermodynamic and kinetic studies show that at 220℃,the chemical reaction between quartz and gangue minerals and the leaching agent can be spontaneous in the direction of positive reaction,and gangue minerals and the leaching agent had priority reaction.The mixed acid leaching process accords with the diffusion control model,Ea is 15.16 kJ/mol,which can provide a theoretical guidance for the purification of quartz.展开更多
This work describes the development of a process to produce zeolite X from mined kaolin clay from Kono-Boue and Chokocho, Rivers State, Nigeria. The procedures involved the beneficiation of the raw kaolin and calcinat...This work describes the development of a process to produce zeolite X from mined kaolin clay from Kono-Boue and Chokocho, Rivers State, Nigeria. The procedures involved the beneficiation of the raw kaolin and calcinations at 850<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C, to transform the kaolin to a more reactive metakaolin. Afterwards, the extremely reactive metakaolin was purge with sulphuric acid to obtain the much needed silica-alumina ratio for zeolite X synthesis. An alkaline fusion stage was then carried out to transform the metakaolin into zeolite by mixing with aqueous NaOH to form gel then allowed to stay for a duration of seven days at room temperature. The samples were then charged into a propylene container and placed in an oven at a temperature of 100<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C for the reaction to take place for 6 h. Identification of the crystalline phases by X-ray Diffraction (XRD), chemical/elemental compositions by X-ray Fluorescence (XRF)/Energy Dispersive Spectroscopic analyses (EDS), surface morphology by Scanning Electron Microscopy (SEM) and molecular vibration of units by Fourier Transform Infrared Spectrophotometry (FT-IR) were done. The results showed that the zeolite synthesized from Chokocho kaolin (CK) was more crystalline/larger with sharper peaks on both XRD and FTIR than that from Kono-Boue. This was also supported by slightly rougher surface morphology of CK over KK on SEM. XRF Si:Al ratios of 10.73 and 14.36 were obtained for KK and CK respectively. EDS results supported the XRF ratios. Sharper zeolitic characteristic O-H stretching bands at 3488 and 3755 cm<sup>-1</sup> were recorded for CK than KK. However, both results showed that zeolite X have been produced from both Kono-Boue and Chokocho kaolin clays respectively.展开更多
The effect of activation properties of the precursors of zeolite directly prepared from kaolin influenced by microwave field and conventional heating was investigated.XRD,TG-DSC,FT-IR,SEM,particle size analysis,specif...The effect of activation properties of the precursors of zeolite directly prepared from kaolin influenced by microwave field and conventional heating was investigated.XRD,TG-DSC,FT-IR,SEM,particle size analysis,specific surface area(BET),pore size distribution(BJH)and N2 adsorption-desorption were discussed to determine the optimal activation temperature.It is concluded that the conversion of kaolin to metakaolin in the microwave field is at 500°C holding for 30 min,which is 100°C lower than that in conventional calcination and 90 min shorter,and the phase transition process of kaolin under the effect of microwave field is the same as that of conventional heating method.SEM analysis indicates that the particle size is more uniform and agglomeration appears slightly in the microwave field.The N2 adsorption-desorption isotherm,BET and BJH of kaolin indicate that the pore properties are almost invariable regardless of calcination route during the process of calcining kaolin into metakaolin.It indicates that microwave calcination is superior to conventional calcination in the activation pathway of kaolin.It is attributed to microwave heating relying on objects to absorb microwave energy and convert it into thermal energy,which can simultaneously and uniformly heat the entire substance.展开更多
The structural and thermomechanical properties of starch-based plastic films reinforced with kaolin and metakaolin have been studied by various techniques (X-ray diffraction, IR-TF spectroscopy, scanning electron micr...The structural and thermomechanical properties of starch-based plastic films reinforced with kaolin and metakaolin have been studied by various techniques (X-ray diffraction, IR-TF spectroscopy, scanning electron microscopy, tensile tests, and thermal resistance). The results obtained showed that kaolin, an inert material, prevents the starch from losing its granular structure and to solubilize during the heating, generating plastic films of low Young’s modulus (7 MPa). On the other hand, metakaolin, an amorphous and dehydroxylated material obtained after heating of kaolin at 700°C for 1 hour, substantially improves the thermomechanical properties of the plastic films. The Young’s modulus increases from 19 MPa to 25 MPa while the thermal resistance increases from 90°C to 120°C. This was attributed to good dispersion of the metakaolin in the polymer matrix after the loss of the granular structure of the starch during heating.展开更多
Polypropylene was cracked thermally and catalytically in the presence of kaoline and silica alumina in a semi batch reactor in the temperature range 400℃~550℃ in order to obtain suitable liquid fuels.The dependenci...Polypropylene was cracked thermally and catalytically in the presence of kaoline and silica alumina in a semi batch reactor in the temperature range 400℃~550℃ in order to obtain suitable liquid fuels.The dependencies between process temperatures,types of catalyst,feed compositions and product yields of the obtained fuel fractions were found.It was observed that up to 450℃ thermal cracking temperature,the major product of pyrolysis was liquid oil and the major product at other higher temperatures(475℃~550℃) are viscous liquid or wax and the highest yield of pyrolysis product is 82.85% by weight at 500℃.Use of kaoline and silica alumina decreased the reaction time and increased the yield of liquid fraction.Again the major pyrolysis product in catalytic pyrolysis at all temperatures was low viscous liquid oil.Silica alumina was found better as compared to kaoline in liquid yield and in reducing the reaction temperature.The maximum oil yield using silica alumina and kaoline catalyst are 91% and 89.5% respectively.On the basis of the obtained results hypothetical continuous process of waste polypropylene plastics processing for engine fuel production can be presented.展开更多
Kaolin has been widely used as an adsorbent to remove heavy metal ions from aqueous solutions. However, the lower heavy metal adsorption capacity of kaolin limits its practical application. A novel environmental frien...Kaolin has been widely used as an adsorbent to remove heavy metal ions from aqueous solutions. However, the lower heavy metal adsorption capacity of kaolin limits its practical application. A novel environmental friendly material, calcium alginate immobilized kaolin (kaolin/CA), was prepared using a sol-gel method. The effects of contact time, pH, adsorbent dose, and temperature on Cu2+ adsorption by kaolin/CA were investigated. The Langmuir isotherm was used to describe the experimental adsorption, the maximum Cu2+ adsorption capacity of the kaolin/CA reached up to 53.63 mg/g. The thermodynamic studies showed that the adsorption reaction was a spontaneous and endothermic process.展开更多
Well-crystallized high-silica NaY zeolites (Si/Al〉2.5) were prepared from a reaction mixture consisting of metakaolin, sodium silicate solution and seed solution via optimization of the mixture composition and reac...Well-crystallized high-silica NaY zeolites (Si/Al〉2.5) were prepared from a reaction mixture consisting of metakaolin, sodium silicate solution and seed solution via optimization of the mixture composition and reaction conditions. The transformation from kaolin to high-silica NaY zeolite was confirmed by XRD, SEM and IR techniques. Subsequently, the influence of synthesis parameters, i.e. initial SIO2/Al2O3, initial Na2O/SiO2, initial H2O/SiO2, aging time of the seed solution, crystallization temperature and crystallization time, on the NaY growth was investigated in terms of crystallinity and Si/Al ratio. The results showed that the effects of initial SiO2/Al2O3, initial Na2O/SiO2 and initial H2O/ SiO2 on the crystaIlinity and Si/Al ratio of NaY zeolite are similar to those observed in the conventional syntheses of NaY zeolites only using sodium silicate solution as silicon source. However, due to the use of metakaolin as the main silicon and aluminum sources in the present study, a long crystallization induction period of 20 h was achieved, which can be attributed to the dissolution of metakaolin. In addition, different from the conventional syntheses of zeolite NaY, pure NaY zeolites (i.e. without NaP zeolite impurity) were still obtained even at 120℃ because of the use of a large quantity of seed solution (23 wt%) in the reaction mixture. As the aging time of the seed solution increased from 3.5 h to 22 h, the relative crystallinity of the NaY zeolite first increased sharply and then reached a plateau, while the Si/Al ratio first increased rapidly up to a maximum value of 2.75 corresponding to an aging time of 6.5 h, and then decreased sharply with the aging time.展开更多
This article reports studies on the coagulation of kaolin(from Wuxian, Jiangsu, China) on various red tide organisms, and the observation for the first time that the coagulation of kaolin is much greater than that of ...This article reports studies on the coagulation of kaolin(from Wuxian, Jiangsu, China) on various red tide organisms, and the observation for the first time that the coagulation of kaolin is much greater than that of montmorillonite so that kaolin is a more effective clay for removing red tide organisms. The authors' theoretical explanation and analysis by a mathematical-physical model prove that compared to montmorillonite. kaolin has greater attraction for organism cells and therefore greater coagulation capabil-ity. This project's studies on the effects of pH and acid-treatment show that the acid-treatment does not have much influence on the kaolin system; whereas the effect of pH on the kaolin system is the same as that on the montmorillonite system.展开更多
The pre-separation of silica and alumina in aluminosilicates is of great significance for efficiently treating alumina-/ silica-bearing minerals for alumina production. In this work, the reaction behavior of kaolinite...The pre-separation of silica and alumina in aluminosilicates is of great significance for efficiently treating alumina-/ silica-bearing minerals for alumina production. In this work, the reaction behavior of kaolinite with ferric oxide during reduction roasting was investigated. The results of thermodynamic analyses and reduction roasting experiments show that ferrous oxide obtained from ferric oxide reduction preferentially reacts with alumina in kaolinite to form hercynite, meanwhile the silica in kaolinite is transformed into quartz solid solution and/or cristobalite solid solution. With increasing roasting temperature, fayalite formed by reaction of surplus ferrous oxide with silica at low temperature is reduced to silica and metallic iron in the presence of sufficient carbon dosage. However, increasing roasting temperature and decreasing Fe2O3/Al2O3 molar ratio favor mullite formation. The complete conversion of kaolinte into free silica and hercynite can be obtained by roasting raw meal of kaolin, ferric oxide and coal powder with Fe2O3/Al2O3/C molar ratio of 1.2:2.0:1.2 at 1373 K for 60 min. This work may facilitate the development of a technique for comprehensively utilizing silica and alumina in aluminosilicates.展开更多
Alkali leaching was employed to investigate the separation of alumina and silica in roasted kaolin obtained by roasting kaolin alone in air at 1273 K for 60 min and in clinker prepared by roasting the mixed raw meal o...Alkali leaching was employed to investigate the separation of alumina and silica in roasted kaolin obtained by roasting kaolin alone in air at 1273 K for 60 min and in clinker prepared by roasting the mixed raw meal of kaolin,ferric oxide and coal powder with Fe2O3/Al2O3/C molar ratio of 1.2:2.0:1.2 in reducing atmosphere at 1373 K for 60 min.The thermodynamic analyses and alkali leaching results show that the composition of the Al-Si spinel in roasted kaolin is close to that of 3Al2O3·2SiO2 and the spinel is dissolved with increasing leaching time,resulting in difficulty in deeply separating alumina and silica in kaolin by the traditional roasting-leaching process.On the contrary,the efficient separation of alumina and silica in kaolin can be reached by fully converting kaolinite into insoluble hercynite and soluble free silica,namely quartz solid solution and cristobalite solid solution,during reduction roasting,followed by alkali leaching of the obtained clinker.Furthermore,experimental results from treating high-silica diasporic bauxite indicate that the reduction roasting-alkali leaching process is potential to separate silica and alumina in aluminosilicates.展开更多
To improve the environmental benefits and solve the problems of large shrinkage and high brittleness, the partial replacement of calcined kaolin by fly ash as a raw material for geopolymer synthesis and the influences...To improve the environmental benefits and solve the problems of large shrinkage and high brittleness, the partial replacement of calcined kaolin by fly ash as a raw material for geopolymer synthesis and the influences of polypropylene (PP) fiber on the mechanical properties and volume stability were investigated. The results show that compressive strength of the geopolymer containing 33.3%(mass fraction) fly ash by steam curing at 80 ℃ for 6 d is improved by 35.5%. The 3-day compressive strength, flexural strength and impacting energy of geopolymers containing 0.05%PP fiber increase by 67.8%, 36.1% and 6.25%, while the shrinkage and modulus of compressibility decrease by 38.6% and 31.3%, respectively. The results of scanning electron microscopy (SEM) and the appearances of crack growths confirm that PP fiber can offer a bridging effect over the harmful pores and defects and change the expanding ways of cracks, resulting in a great improvement of strength and toughness.展开更多
SAPO-34 zeolite is considered to be an effective catalyst for methanol or dimethyl ether conversion to olefins. In this study,we developed the in situ synthesis technology to prepare SAPO-34 zeolite in kaolin micro-sp...SAPO-34 zeolite is considered to be an effective catalyst for methanol or dimethyl ether conversion to olefins. In this study,we developed the in situ synthesis technology to prepare SAPO-34 zeolite in kaolin micro-spheres as a catalyst for fluidized methanol or dimethyl ether to olefins process. The silicoaluminophosphate zeolite was first time reported to be synthesized in kaolin microspheres. The SAPO-34 content of synthesized catalyst was about 22% as measured by three different quantitative methods(micropore area,X-ray fluorescence and energy dispersive spectroscopy element analysis) . Most of the SAPO-34 zeolites were in nanoscale size and distributed uniformly inside the spheres. The catalytic performance was evaluated in fixed bed and fluidized bed reactors. Compared with the conventional spray-dry catalyst,SAPO/kaolin catalyst showed superior catalytic activities,bet-ter olefin selectivities(up to 94%,exclusive coke) ,and very good hydrothermal stability. The in situ synthesis of SAPO-34 in kaolin microspheres is a facile and economically feasible way to prepare more effective catalyst for fluidized MTO/DTO(methanol to olefins/dimethyl ether to olefins) process.展开更多
Calcination and acid leaching of coal kaolin were studied to determine an effective and economical preparation method of calcined kaolin. Thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffracti...Calcination and acid leaching of coal kaolin were studied to determine an effective and economical preparation method of calcined kaolin. Thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffraction (XRD) demonstrated that 900&#176;C was the suitable temperature for the calcination. Leaching tests showed that hydrochloric acid was more effective for iron dissolution from raw coal kaolin (RCK), whereas oxalic acid was more effective on iron dissolution from calcined coal kaolin (CCK). The iron dissolution from CCK was 28.78wt%, which is far less effective than the 54.86wt% of RCK under their respective optimal conditions. Through analysis by using M?ssbauer spectroscopy, it is detected that nearly all of the structural ferrous ions in RCK were removed by hydrochloric acid. However, iron sites in CCK changed slightly by oxalic acid leaching because nearly all ferrous ions were transformed into ferric species after firing at 900&#176;C. It can be concluded that it is difficult to remove the structural ferric ions and ferric oxides evolved from the structural ferrous ions. Thus, iron removal by acids should be conducted prior to calcination.展开更多
Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and w...Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and was mixed with the sodium silicate solution at a Na2SiO3/NaOH mass ratio of 0.24 to prepare an activator solution. The kaolin-to-activator solution mass ratio used was 0.80. This paper aimed to analyze the effect of NaOH concentration on the compressive strength of kaolin geopolymers at 80℃ for 1, 2, and 3 d. Kaolin geopolymers were stable in water, and strength results showed that the kaolin binder had adequate compressive strength with 12 mol/L of NaOH concentration. When the NaOH concentration increased, the SiO2/Na20 decreased. The increased Na20 content enhanced the dissolution of kaolin as shown in X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses. However, excess in this content was not beneficial for the strength development of kaolin geopolymers. In addition, there was the formation of more geopolymeric gel in 12 mol/L samples. The XRD pattern of the samples showed a higher amorphous content and a more geopolymer bonding existed as proved by FTIR analysis.展开更多
基金the National Natural Science Foundation of China(grant 22208054,22178059 and U23A20113)Natural Science Foundation of Fujian Province,China(grant 2022J01572)+1 种基金Sinochem Quanzhou Energy Technology Co.,Ltd.(grant ZHQZKJ-19-F-ZS-0076)Qingyuan Innovation Laboratory(grant 00121002 and 00523005)for their financial supports.
文摘Hierarchical SAPO-11, featuring both micropore and mesopore channels, demonstrates an outstanding performance in high-octane gasoline production. In this work, we propose an economic and effective approach to directly fabricate hierarchical SAPO-11 molecular sieve from natural kaolin, eliminating the need for mesoporogens. The systematic characterization results show that the kaolin-derived SAPO-11 possesses abundant micro-mesoporous structure and more Brønsted (B) acid sites on the external surface in contrast with the conventional SAPO-11 prepared employing silica sol as silicon source as well as SAPO-11 synthesized with the assist with of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (F127). The analysis of the formation process reveals that the kaolin not only provides silicon source for the SAPO-11 crystal growth, but also offers confined environment for crystal growth along the preferential orientation, resulting in the generation of the microporous and mesoporous structure. Benefiting from these unique properties, the kaolin-derived Pt/SAPO-11 exhibits considerably improved selectivity for di-branched C8 isomers in n-octane hydroisomerization.
基金supported by the National Natural Science Foundation of China(Nos.U23A20153,and 32101319).
文摘Sediment properties have a crucial effect on the growth and recovery of aquatic plants in lakes.Addition of various chemical substances has been proposed to reinforce the recovery of plants after a nutrient loading reduction.However,the effects of such sediment amendments on plant growth,especially those from rhizosphere microorganisms,is limited.We added Kaolin clay to sediments in different concentrations to explore its impact on the growth of Vallisneria natans and Ottelia acuminate and the concurrent shift in rhizosphere microorganisms using high-throughput sequencing technology.We found that the addition of low doses(10%and 20%in mass ratio)of Kaolin significantly modified sediment conditions(oxidation reduction potential and pH),with implications also for the composition,diversity,and stability of rhizosphere microorganisms.LEfSe analysis revealed that low-dose addition of Kaolin increased the abundances of functional microbial groups that benefit plant nutrient absorption and enhance plant stress resistance,such as Spirillaceae,Rhodocyclaceae,and Burkholderiales.Moreover,low doses of Kaolin significantly promoted the photosynthesis and nutrient absorption of submerged macrophytes,thereby facilitating plant growth.A structural equation model(SEM)indicated that the direct impact of Kaolin on the growth of submerged plants was relatively minor,while the indirect effect through modulation of rhizosphere microorganisms was important.Our study suggests that low doses of Kaolin may be used to promote the growth of submerged macrophytes when lakes with a high organic content in the sediment are recovering after nutrient loading reduction.
文摘The process mineralogy of kaolin associated quartz flotation concentrate was studied.The experimental results show that the content of SiO2 in the flotation concentrate is 99.66%,and the main impurity elements in the concentrate are Al,Fe,K,and Na.The gangue minerals in the flotation concentrate are mainly mica and feldspar symbiosis with quartz in the form of connexion or mineral inclusion.By taking the flotation concentrate as the raw material,the experimental research on HF concentration,HCl concentration,HNO3 concentration,acid leaching temperature,acid leaching time,and the leaching liquid solid ratio of hot pressing acid leaching conditions was carried out.Finally,the factors affecting the quality of purified products were analyzed.Through the acid leaching experiment,it can be seen that hydrofluoric acid has a greater effect on Al and Fe elements,hydrochloric acid has a greater effect on Fe elements,and nitric acid concentration has a smaller effect on impurity elements(which can also be confirmed from the thermodynamic analysis);the acid leaching temperature,the acid leaching time,and the leaching liquid solid mass ratio are proportional to the acid leaching effect.The Al content decreases from 1304.73 to 214.10μg/g,and the aluminum removal rate is 86.12%.The Fe content decreases from 39.35 to 3.72μg/g,and the iron removal rate is 90.55%.Thermodynamic and kinetic studies show that at 220℃,the chemical reaction between quartz and gangue minerals and the leaching agent can be spontaneous in the direction of positive reaction,and gangue minerals and the leaching agent had priority reaction.The mixed acid leaching process accords with the diffusion control model,Ea is 15.16 kJ/mol,which can provide a theoretical guidance for the purification of quartz.
文摘This work describes the development of a process to produce zeolite X from mined kaolin clay from Kono-Boue and Chokocho, Rivers State, Nigeria. The procedures involved the beneficiation of the raw kaolin and calcinations at 850<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C, to transform the kaolin to a more reactive metakaolin. Afterwards, the extremely reactive metakaolin was purge with sulphuric acid to obtain the much needed silica-alumina ratio for zeolite X synthesis. An alkaline fusion stage was then carried out to transform the metakaolin into zeolite by mixing with aqueous NaOH to form gel then allowed to stay for a duration of seven days at room temperature. The samples were then charged into a propylene container and placed in an oven at a temperature of 100<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C for the reaction to take place for 6 h. Identification of the crystalline phases by X-ray Diffraction (XRD), chemical/elemental compositions by X-ray Fluorescence (XRF)/Energy Dispersive Spectroscopic analyses (EDS), surface morphology by Scanning Electron Microscopy (SEM) and molecular vibration of units by Fourier Transform Infrared Spectrophotometry (FT-IR) were done. The results showed that the zeolite synthesized from Chokocho kaolin (CK) was more crystalline/larger with sharper peaks on both XRD and FTIR than that from Kono-Boue. This was also supported by slightly rougher surface morphology of CK over KK on SEM. XRF Si:Al ratios of 10.73 and 14.36 were obtained for KK and CK respectively. EDS results supported the XRF ratios. Sharper zeolitic characteristic O-H stretching bands at 3488 and 3755 cm<sup>-1</sup> were recorded for CK than KK. However, both results showed that zeolite X have been produced from both Kono-Boue and Chokocho kaolin clays respectively.
基金Projects(51604135,51504116)supported by the National Natural Science Foundational of ChinaProject(YNWR-QNBJ-2018-323)supported by the Yunan Ten Thousand Talents Plan Young&Elite Talents Project,China。
文摘The effect of activation properties of the precursors of zeolite directly prepared from kaolin influenced by microwave field and conventional heating was investigated.XRD,TG-DSC,FT-IR,SEM,particle size analysis,specific surface area(BET),pore size distribution(BJH)and N2 adsorption-desorption were discussed to determine the optimal activation temperature.It is concluded that the conversion of kaolin to metakaolin in the microwave field is at 500°C holding for 30 min,which is 100°C lower than that in conventional calcination and 90 min shorter,and the phase transition process of kaolin under the effect of microwave field is the same as that of conventional heating method.SEM analysis indicates that the particle size is more uniform and agglomeration appears slightly in the microwave field.The N2 adsorption-desorption isotherm,BET and BJH of kaolin indicate that the pore properties are almost invariable regardless of calcination route during the process of calcining kaolin into metakaolin.It indicates that microwave calcination is superior to conventional calcination in the activation pathway of kaolin.It is attributed to microwave heating relying on objects to absorb microwave energy and convert it into thermal energy,which can simultaneously and uniformly heat the entire substance.
文摘The structural and thermomechanical properties of starch-based plastic films reinforced with kaolin and metakaolin have been studied by various techniques (X-ray diffraction, IR-TF spectroscopy, scanning electron microscopy, tensile tests, and thermal resistance). The results obtained showed that kaolin, an inert material, prevents the starch from losing its granular structure and to solubilize during the heating, generating plastic films of low Young’s modulus (7 MPa). On the other hand, metakaolin, an amorphous and dehydroxylated material obtained after heating of kaolin at 700°C for 1 hour, substantially improves the thermomechanical properties of the plastic films. The Young’s modulus increases from 19 MPa to 25 MPa while the thermal resistance increases from 90°C to 120°C. This was attributed to good dispersion of the metakaolin in the polymer matrix after the loss of the granular structure of the starch during heating.
文摘Polypropylene was cracked thermally and catalytically in the presence of kaoline and silica alumina in a semi batch reactor in the temperature range 400℃~550℃ in order to obtain suitable liquid fuels.The dependencies between process temperatures,types of catalyst,feed compositions and product yields of the obtained fuel fractions were found.It was observed that up to 450℃ thermal cracking temperature,the major product of pyrolysis was liquid oil and the major product at other higher temperatures(475℃~550℃) are viscous liquid or wax and the highest yield of pyrolysis product is 82.85% by weight at 500℃.Use of kaoline and silica alumina decreased the reaction time and increased the yield of liquid fraction.Again the major pyrolysis product in catalytic pyrolysis at all temperatures was low viscous liquid oil.Silica alumina was found better as compared to kaoline in liquid yield and in reducing the reaction temperature.The maximum oil yield using silica alumina and kaoline catalyst are 91% and 89.5% respectively.On the basis of the obtained results hypothetical continuous process of waste polypropylene plastics processing for engine fuel production can be presented.
基金supported by the National Natural Science Foundation of China (No. 50802045,20975056/B050902)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,and the Middleaged and Youth Scientist Incentive Foundation of Shandong Province (No.BS09018)
文摘Kaolin has been widely used as an adsorbent to remove heavy metal ions from aqueous solutions. However, the lower heavy metal adsorption capacity of kaolin limits its practical application. A novel environmental friendly material, calcium alginate immobilized kaolin (kaolin/CA), was prepared using a sol-gel method. The effects of contact time, pH, adsorbent dose, and temperature on Cu2+ adsorption by kaolin/CA were investigated. The Langmuir isotherm was used to describe the experimental adsorption, the maximum Cu2+ adsorption capacity of the kaolin/CA reached up to 53.63 mg/g. The thermodynamic studies showed that the adsorption reaction was a spontaneous and endothermic process.
基金supported by Beijing Natural Science Foundation (Grant No.2093043)the National Natural Science Foundation of China (Grant No.20606038)
文摘Well-crystallized high-silica NaY zeolites (Si/Al〉2.5) were prepared from a reaction mixture consisting of metakaolin, sodium silicate solution and seed solution via optimization of the mixture composition and reaction conditions. The transformation from kaolin to high-silica NaY zeolite was confirmed by XRD, SEM and IR techniques. Subsequently, the influence of synthesis parameters, i.e. initial SIO2/Al2O3, initial Na2O/SiO2, initial H2O/SiO2, aging time of the seed solution, crystallization temperature and crystallization time, on the NaY growth was investigated in terms of crystallinity and Si/Al ratio. The results showed that the effects of initial SiO2/Al2O3, initial Na2O/SiO2 and initial H2O/ SiO2 on the crystaIlinity and Si/Al ratio of NaY zeolite are similar to those observed in the conventional syntheses of NaY zeolites only using sodium silicate solution as silicon source. However, due to the use of metakaolin as the main silicon and aluminum sources in the present study, a long crystallization induction period of 20 h was achieved, which can be attributed to the dissolution of metakaolin. In addition, different from the conventional syntheses of zeolite NaY, pure NaY zeolites (i.e. without NaP zeolite impurity) were still obtained even at 120℃ because of the use of a large quantity of seed solution (23 wt%) in the reaction mixture. As the aging time of the seed solution increased from 3.5 h to 22 h, the relative crystallinity of the NaY zeolite first increased sharply and then reached a plateau, while the Si/Al ratio first increased rapidly up to a maximum value of 2.75 corresponding to an aging time of 6.5 h, and then decreased sharply with the aging time.
基金Project supported by Chinese Possteoctoral Fund Shandong Natural Science Fund No.93E0175
文摘This article reports studies on the coagulation of kaolin(from Wuxian, Jiangsu, China) on various red tide organisms, and the observation for the first time that the coagulation of kaolin is much greater than that of montmorillonite so that kaolin is a more effective clay for removing red tide organisms. The authors' theoretical explanation and analysis by a mathematical-physical model prove that compared to montmorillonite. kaolin has greater attraction for organism cells and therefore greater coagulation capabil-ity. This project's studies on the effects of pH and acid-treatment show that the acid-treatment does not have much influence on the kaolin system; whereas the effect of pH on the kaolin system is the same as that on the montmorillonite system.
基金Project(51604309)supported by the National Natural Science Foundation of China
文摘The pre-separation of silica and alumina in aluminosilicates is of great significance for efficiently treating alumina-/ silica-bearing minerals for alumina production. In this work, the reaction behavior of kaolinite with ferric oxide during reduction roasting was investigated. The results of thermodynamic analyses and reduction roasting experiments show that ferrous oxide obtained from ferric oxide reduction preferentially reacts with alumina in kaolinite to form hercynite, meanwhile the silica in kaolinite is transformed into quartz solid solution and/or cristobalite solid solution. With increasing roasting temperature, fayalite formed by reaction of surplus ferrous oxide with silica at low temperature is reduced to silica and metallic iron in the presence of sufficient carbon dosage. However, increasing roasting temperature and decreasing Fe2O3/Al2O3 molar ratio favor mullite formation. The complete conversion of kaolinte into free silica and hercynite can be obtained by roasting raw meal of kaolin, ferric oxide and coal powder with Fe2O3/Al2O3/C molar ratio of 1.2:2.0:1.2 at 1373 K for 60 min. This work may facilitate the development of a technique for comprehensively utilizing silica and alumina in aluminosilicates.
基金Project(51604309) supported by the National Natural Science Foundation of China
文摘Alkali leaching was employed to investigate the separation of alumina and silica in roasted kaolin obtained by roasting kaolin alone in air at 1273 K for 60 min and in clinker prepared by roasting the mixed raw meal of kaolin,ferric oxide and coal powder with Fe2O3/Al2O3/C molar ratio of 1.2:2.0:1.2 in reducing atmosphere at 1373 K for 60 min.The thermodynamic analyses and alkali leaching results show that the composition of the Al-Si spinel in roasted kaolin is close to that of 3Al2O3·2SiO2 and the spinel is dissolved with increasing leaching time,resulting in difficulty in deeply separating alumina and silica in kaolin by the traditional roasting-leaching process.On the contrary,the efficient separation of alumina and silica in kaolin can be reached by fully converting kaolinite into insoluble hercynite and soluble free silica,namely quartz solid solution and cristobalite solid solution,during reduction roasting,followed by alkali leaching of the obtained clinker.Furthermore,experimental results from treating high-silica diasporic bauxite indicate that the reduction roasting-alkali leaching process is potential to separate silica and alumina in aluminosilicates.
基金Project(2006AA06Z225) supported by the National High-Tech Research and Development Program of China
文摘To improve the environmental benefits and solve the problems of large shrinkage and high brittleness, the partial replacement of calcined kaolin by fly ash as a raw material for geopolymer synthesis and the influences of polypropylene (PP) fiber on the mechanical properties and volume stability were investigated. The results show that compressive strength of the geopolymer containing 33.3%(mass fraction) fly ash by steam curing at 80 ℃ for 6 d is improved by 35.5%. The 3-day compressive strength, flexural strength and impacting energy of geopolymers containing 0.05%PP fiber increase by 67.8%, 36.1% and 6.25%, while the shrinkage and modulus of compressibility decrease by 38.6% and 31.3%, respectively. The results of scanning electron microscopy (SEM) and the appearances of crack growths confirm that PP fiber can offer a bridging effect over the harmful pores and defects and change the expanding ways of cracks, resulting in a great improvement of strength and toughness.
基金Supported by the National Natural Science Foundation of China(20736004)
文摘SAPO-34 zeolite is considered to be an effective catalyst for methanol or dimethyl ether conversion to olefins. In this study,we developed the in situ synthesis technology to prepare SAPO-34 zeolite in kaolin micro-spheres as a catalyst for fluidized methanol or dimethyl ether to olefins process. The silicoaluminophosphate zeolite was first time reported to be synthesized in kaolin microspheres. The SAPO-34 content of synthesized catalyst was about 22% as measured by three different quantitative methods(micropore area,X-ray fluorescence and energy dispersive spectroscopy element analysis) . Most of the SAPO-34 zeolites were in nanoscale size and distributed uniformly inside the spheres. The catalytic performance was evaluated in fixed bed and fluidized bed reactors. Compared with the conventional spray-dry catalyst,SAPO/kaolin catalyst showed superior catalytic activities,bet-ter olefin selectivities(up to 94%,exclusive coke) ,and very good hydrothermal stability. The in situ synthesis of SAPO-34 in kaolin microspheres is a facile and economically feasible way to prepare more effective catalyst for fluidized MTO/DTO(methanol to olefins/dimethyl ether to olefins) process.
基金financially supported by Zhejiang Natural Science Foundation(No.Y1080393)Opening Foundation of State Key Laboratory of Clean Energy Utilization(No.ZJUEDU2012001)
文摘Calcination and acid leaching of coal kaolin were studied to determine an effective and economical preparation method of calcined kaolin. Thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffraction (XRD) demonstrated that 900&#176;C was the suitable temperature for the calcination. Leaching tests showed that hydrochloric acid was more effective for iron dissolution from raw coal kaolin (RCK), whereas oxalic acid was more effective on iron dissolution from calcined coal kaolin (CCK). The iron dissolution from CCK was 28.78wt%, which is far less effective than the 54.86wt% of RCK under their respective optimal conditions. Through analysis by using M?ssbauer spectroscopy, it is detected that nearly all of the structural ferrous ions in RCK were removed by hydrochloric acid. However, iron sites in CCK changed slightly by oxalic acid leaching because nearly all ferrous ions were transformed into ferric species after firing at 900&#176;C. It can be concluded that it is difficult to remove the structural ferric ions and ferric oxides evolved from the structural ferrous ions. Thus, iron removal by acids should be conducted prior to calcination.
基金the King Abdulaziz City Science and Technology (KACST) for funding this study through collaboration between KACST-Universiti Malaysia Perlis (UniMAP)
文摘Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and was mixed with the sodium silicate solution at a Na2SiO3/NaOH mass ratio of 0.24 to prepare an activator solution. The kaolin-to-activator solution mass ratio used was 0.80. This paper aimed to analyze the effect of NaOH concentration on the compressive strength of kaolin geopolymers at 80℃ for 1, 2, and 3 d. Kaolin geopolymers were stable in water, and strength results showed that the kaolin binder had adequate compressive strength with 12 mol/L of NaOH concentration. When the NaOH concentration increased, the SiO2/Na20 decreased. The increased Na20 content enhanced the dissolution of kaolin as shown in X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses. However, excess in this content was not beneficial for the strength development of kaolin geopolymers. In addition, there was the formation of more geopolymeric gel in 12 mol/L samples. The XRD pattern of the samples showed a higher amorphous content and a more geopolymer bonding existed as proved by FTIR analysis.