The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functio...The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functions has an influence on denoising results. We propose a learning-type overcomplete dictionary based on the K-singular value decomposition( K-SVD) algorithm. To construct the dictionary and use it for random seismic noise attenuation,we replace fixed transform base functions with an overcomplete redundancy function library. Owing to the adaptability to data characteristics,the learning-type dictionary describes essential data characteristics much better than conventional denoising methods. The sparsest representation of signals is obtained by the learning and training of seismic data. By comparing the same seismic data obtained using the learning-type overcomplete dictionary based on K-SVD and the data obtained using other denoising methods,we find that the learning-type overcomplete dictionary based on the K-SVD algorithm represents the seismic data more sparsely,effectively suppressing the random noise and improving the signal-to-noise ratio.展开更多
针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法...针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。展开更多
轴承故障信号识别经常受到各种噪音的影响,传统K奇异值分解(K-Singular value decomposition, K-SVD)算法在稀疏表示中效果较差,通过终止准则对进K-SVD字典学习优化,设计了基于改进K-SVD稀疏表示的轴承微弱故障信号特征处理方法。将终...轴承故障信号识别经常受到各种噪音的影响,传统K奇异值分解(K-Singular value decomposition, K-SVD)算法在稀疏表示中效果较差,通过终止准则对进K-SVD字典学习优化,设计了基于改进K-SVD稀疏表示的轴承微弱故障信号特征处理方法。将终止准则当作字典更新收敛条件,采取正交匹配追踪算法进行稀疏求解,以包络谱形式实施分析,达成对微弱故障特征的提取目标。仿真信号结果表明,添加噪声信号时域图难以对特征频率实施精准提取。通过改进K-SVD算法来学习该分量特征信息有着明显的冲击特征,通过重构误差的波动状况对更新收敛性验证。试验结果结果表明,故障特征频率被其它频率掩盖,导致故障状态难以被有效辨别。本文方法实现对微弱故障特征的高效提取,精准判断故障状态。展开更多
针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别...针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。展开更多
树是连通的无圈图,研究树的拉普拉斯矩阵具有重要的图论和实际意义.设G是一个有n个点和m个边的图,A(G)和D(G)分别是图G的邻接矩阵和对角度矩阵,那么G的拉普拉斯矩阵定义为L(G)=D(G)-A(G).LI矩阵定义为LI(G)=L(G)-(2m/n)I_(n),其中I_(n)...树是连通的无圈图,研究树的拉普拉斯矩阵具有重要的图论和实际意义.设G是一个有n个点和m个边的图,A(G)和D(G)分别是图G的邻接矩阵和对角度矩阵,那么G的拉普拉斯矩阵定义为L(G)=D(G)-A(G).LI矩阵定义为LI(G)=L(G)-(2m/n)I_(n),其中I_(n)是单位矩阵.图的LI矩阵的Ky Fan k-范数代表了拉普拉斯特征值和拉普拉斯特征值平均值之间距离的有序和.研究了双星图的LI矩阵的Ky Fan k-范数,证明了双星图的LI矩阵的Ky Fan k-范数满足文献[6]中提出的猜想.展开更多
提出一种基于图像残差的超分辨率重建算法。以原高分辨率图像与插值放大后图像之间的图像残差与低分辨率图像样本特征作为样本对,对其进行K均值分类,并对每类样本对采用KSVD(K-singular value decomposi-tion)方法进行训练获得高、低分...提出一种基于图像残差的超分辨率重建算法。以原高分辨率图像与插值放大后图像之间的图像残差与低分辨率图像样本特征作为样本对,对其进行K均值分类,并对每类样本对采用KSVD(K-singular value decomposi-tion)方法进行训练获得高、低分辨率字典对,然后根据测试样本与类中心的欧氏距离选择字典对,以与测试样本相近的多个类别所重建的结果加权获得图像残差,并结合低分辨率图像的插值结果获得高分辨率图像。实验结果表明,提出的方法具有更高的重建质量,且采用训练样本分类和相近类别的重建结果的加权和有利于提高图像重建质量。展开更多
基金Supported by the National"863"Project(No.2014AA06A605)
文摘The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functions has an influence on denoising results. We propose a learning-type overcomplete dictionary based on the K-singular value decomposition( K-SVD) algorithm. To construct the dictionary and use it for random seismic noise attenuation,we replace fixed transform base functions with an overcomplete redundancy function library. Owing to the adaptability to data characteristics,the learning-type dictionary describes essential data characteristics much better than conventional denoising methods. The sparsest representation of signals is obtained by the learning and training of seismic data. By comparing the same seismic data obtained using the learning-type overcomplete dictionary based on K-SVD and the data obtained using other denoising methods,we find that the learning-type overcomplete dictionary based on the K-SVD algorithm represents the seismic data more sparsely,effectively suppressing the random noise and improving the signal-to-noise ratio.
文摘针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。
文摘轴承故障信号识别经常受到各种噪音的影响,传统K奇异值分解(K-Singular value decomposition, K-SVD)算法在稀疏表示中效果较差,通过终止准则对进K-SVD字典学习优化,设计了基于改进K-SVD稀疏表示的轴承微弱故障信号特征处理方法。将终止准则当作字典更新收敛条件,采取正交匹配追踪算法进行稀疏求解,以包络谱形式实施分析,达成对微弱故障特征的提取目标。仿真信号结果表明,添加噪声信号时域图难以对特征频率实施精准提取。通过改进K-SVD算法来学习该分量特征信息有着明显的冲击特征,通过重构误差的波动状况对更新收敛性验证。试验结果结果表明,故障特征频率被其它频率掩盖,导致故障状态难以被有效辨别。本文方法实现对微弱故障特征的高效提取,精准判断故障状态。
文摘针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。
文摘树是连通的无圈图,研究树的拉普拉斯矩阵具有重要的图论和实际意义.设G是一个有n个点和m个边的图,A(G)和D(G)分别是图G的邻接矩阵和对角度矩阵,那么G的拉普拉斯矩阵定义为L(G)=D(G)-A(G).LI矩阵定义为LI(G)=L(G)-(2m/n)I_(n),其中I_(n)是单位矩阵.图的LI矩阵的Ky Fan k-范数代表了拉普拉斯特征值和拉普拉斯特征值平均值之间距离的有序和.研究了双星图的LI矩阵的Ky Fan k-范数,证明了双星图的LI矩阵的Ky Fan k-范数满足文献[6]中提出的猜想.
文摘提出一种基于图像残差的超分辨率重建算法。以原高分辨率图像与插值放大后图像之间的图像残差与低分辨率图像样本特征作为样本对,对其进行K均值分类,并对每类样本对采用KSVD(K-singular value decomposi-tion)方法进行训练获得高、低分辨率字典对,然后根据测试样本与类中心的欧氏距离选择字典对,以与测试样本相近的多个类别所重建的结果加权获得图像残差,并结合低分辨率图像的插值结果获得高分辨率图像。实验结果表明,提出的方法具有更高的重建质量,且采用训练样本分类和相近类别的重建结果的加权和有利于提高图像重建质量。