期刊文献+
共找到731篇文章
< 1 2 37 >
每页显示 20 50 100
Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm 被引量:1
1
作者 Xiaoge Wei Yuming Zhang +2 位作者 Huaitao Song Hengjie Qin Guanjun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1295-1316,共22页
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi... Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential. 展开更多
关键词 Sparrow search algorithm optimization and improvement function test set evacuation path planning
在线阅读 下载PDF
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
2
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth Sorting Fast search algorithm Underwater gravity-aided navigation path planning efficiency Quick Rapidly-exploring Random Trees*(QRRT*)
在线阅读 下载PDF
A Modified Self-Adaptive Sparrow Search Algorithm for Robust Multi-UAV Path Planning
3
作者 SUN Zhiyuan SHEN Bo +2 位作者 PAN Anqi XUE Jiankai MA Yuhang 《Journal of Donghua University(English Edition)》 CAS 2024年第6期630-643,共14页
With the advancement of technology,the collaboration of multiple unmanned aerial vehicles(multi-UAVs)is a general trend,both in military and civilian domains.Path planning is a crucial step for multi-UAV mission execu... With the advancement of technology,the collaboration of multiple unmanned aerial vehicles(multi-UAVs)is a general trend,both in military and civilian domains.Path planning is a crucial step for multi-UAV mission execution,it is a nonlinear problem with constraints.Traditional optimization algorithms have difficulty in finding the optimal solution that minimizes the cost function under various constraints.At the same time,robustness should be taken into account to ensure the reliable and safe operation of the UAVs.In this paper,a self-adaptive sparrow search algorithm(SSA),denoted as DRSSA,is presented.During optimization,a dynamic population strategy is used to allocate the searching effort between exploration and exploitation;a t-distribution perturbation coefficient is proposed to adaptively adjust the exploration range;a random learning strategy is used to help the algorithm from falling into the vicinity of the origin and local optimums.The convergence of DRSSA is tested by 29 test functions from the Institute of Electrical and Electronics Engineers(IEEE)Congress on Evolutionary Computation(CEC)2017 benchmark suite.Furthermore,a stochastic optimization strategy is introduced to enhance safety in the path by accounting for potential perturbations.Two sets of simulation experiments on multi-UAV path planning in three-dimensional environments demonstrate that the algorithm exhibits strong optimization capabilities and robustness in dealing with uncertain situations. 展开更多
关键词 multiple unmanned aerial vehicle(multi-UAV) path planning sparrow search algorithm(SSA) stochastic optimization
在线阅读 下载PDF
Elite Dung Beetle Optimization Algorithm for Multi-UAV Cooperative Search in Mountainous Environments 被引量:2
4
作者 Xiaoyong Zhang Wei Yue 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1677-1694,共18页
This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using th... This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation. 展开更多
关键词 Mountainous environment Multi-UAV cooperative search Environment information consistency Elite dung beetle optimization algorithm(EDBOA) path planning
在线阅读 下载PDF
An Intelligent Multi-robot Path Planning in a Dynamic Environment Using Improved Gravitational Search Algorithm 被引量:5
5
作者 P.K.Das H.S.Behera +1 位作者 P.K.Jena B.K.Panigrahi 《International Journal of Automation and computing》 EI CSCD 2021年第6期1032-1044,共13页
This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based... This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based on the communication and memory characteristics of particle swarm optimization(PSO). IGSA technique is incorporated into the multi-robot system in a dynamic framework, which will provide robust performance, self-deterministic cooperation, and coping with an inhospitable environment. The robots in the team make independent decisions, coordinate, and cooperate with each other to accomplish a common goal using the developed IGSA. A path planning scheme has been developed using IGSA to optimally obtain the succeeding positions of the robots from the existing position in the proposed environment. Finally, the analytical and experimental results of the multi-robot path planning were compared with those obtained by IGSA, GSA and differential evolution(DE) in a similar environment. The simulation and the Khepera environment result show outperforms of IGSA as compared to GSA and DE with respect to the average total trajectory path deviation, average uncovered trajectory target distance and energy optimization in terms of rotation. 展开更多
关键词 Gravitational search algorithm multi-robot path planning average total trajectory path deviation average uncovered trajectory target distance average path length
原文传递
Biologically Inspired Node Generation Algorithm for Path Planning of Hyper-redundant Manipulators Using Probabilistic Roadmap 被引量:2
6
作者 Eric Lanteigne Amor Jnifene 《International Journal of Automation and computing》 EI CSCD 2014年第2期153-161,共9页
This article describes a biologically inspired node generator for the path planning of serially connected hyper-redundant manipulators using probabilistic roadmap planners. The generator searches the configuration spa... This article describes a biologically inspired node generator for the path planning of serially connected hyper-redundant manipulators using probabilistic roadmap planners. The generator searches the configuration space surrounding existing nodes in the roadmap and uses a combination of random and deterministic search methods that emulate the behaviour of octopus limbs. The strategy consists of randomly mutating the states of the links near the end-effector, and mutating the states of the links near the base of the robot toward the states of the goal configuration. When combined with the small tree probabilistic roadmap planner, the method was successfully used to solve the narrow passage motion planning problem of a 17 degree-of-freedom manipulator. 展开更多
关键词 path planning hyper-redundant manipulators probabilistic road map(PRM) quasi-deterministic node generation bi-directional search algorithm.
原文传递
Grid-Based Path Planner Using Multivariant Optimization Algorithm
7
作者 Baolei Li Danjv Lv +3 位作者 Xinling Shi Zhenzhou An Yufeng Zhang Jianhua Chen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第5期89-96,共8页
To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) an... To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) and a modified indirect encoding scheme are proposed. In MOA,the solution space is iteratively searched through global exploration and local exploitation by intelligent searching individuals,who are named as atoms. MOA is employed to locate the shortest path through iterations of global path planning and local path refinements in the proposed path planning approach. In each iteration,a group of global atoms are employed to perform the global path planning aiming at finding some candidate paths rapidly and then a group of local atoms are allotted to each candidate path for refinement. Further,the traditional indirect encoding scheme is modified to reduce the possibility of constructing an infeasible path from an array. Comparative experiments against two other frequently use intelligent optimization approaches: Genetic Algorithm( GA) and Particle Swarm Optimization( PSO) are conducted on benchmark test problems of varying complexity to evaluate the performance of MOA. The results demonstrate that MOA outperforms GA and PSO in terms of optimality indicated by the length of the located path. 展开更多
关键词 multivariant optimization algorithm shortest path planning heuristic search grid map optimality of algorithm
在线阅读 下载PDF
A path planning method for robot patrol inspection in chemical industrial parks
8
作者 王伟峰 YANG Ze +1 位作者 LI Zhao ZHAO Xuanchong 《High Technology Letters》 EI CAS 2024年第2期109-116,共8页
Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to... Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to harsh environment,are widely applied in such parks.However,they rely on manual readings which have problems like heavy patrol workload,high labor cost,high false positives/negatives and poor timeliness.To address the above problems,this study proposes a path planning method for robot patrol in chemical industrial parks,where a path optimization model based on improved iterated local search and random variable neighborhood descent(ILS-RVND)algorithm is established by integrating the actual requirements of patrol tasks in chemical industrial parks.Further,the effectiveness of the model and algorithm is verified by taking real park data as an example.The results show that compared with GA and ILS-RVND,the improved algorithm reduces quantification cost by about 24%and saves patrol time by about 36%.Apart from shortening the patrol time of robots,optimizing their patrol path and reducing their maintenance loss,the proposed algorithm also avoids the untimely patrol of robots and enhances the safety factor of equipment. 展开更多
关键词 path planning robot patrol inspection iterated local search and random variableneighborhood descent(ILS-RVND)algorithm
在线阅读 下载PDF
基于邻域搜索策略的蜣螂优化算法及应用 被引量:1
9
作者 杜晓昕 牛丽明 +3 位作者 王波 王一萍 李长荣 王振飞 《广西师范大学学报(自然科学版)》 北大核心 2025年第2期149-167,共19页
针对蜣螂优化算法存在收敛速度慢,容易陷入局部最优,且全局探索能力较弱等问题,受领导者-追随者策略(leader-follower)的启发,本文提出一种基于邻域搜索策略的蜣螂优化算法。首先,引入Singer映射初始化种群,提高初始解的质量,提高算法... 针对蜣螂优化算法存在收敛速度慢,容易陷入局部最优,且全局探索能力较弱等问题,受领导者-追随者策略(leader-follower)的启发,本文提出一种基于邻域搜索策略的蜣螂优化算法。首先,引入Singer映射初始化种群,提高初始解的质量,提高算法的收敛速度;其次,提出一种邻域搜索策略来增强种群多样性,跳出局部收敛,提高算法的局部开发能力;最后,设计一种精英池-扰动策略来扩大搜索范围,增强算法的全局勘探和局部寻优能力,提高算法的求解效率及求解精度。为了验证所提算法的有效性,本文设计一系列实验来验证所提算法的性能,结果表明,该算法在寻优精度和收敛速度方面有较大提升。将该算法应用于无人机三维路径规划问题,实验结果表明,该算法在处理实际应用问题时表现出了有效性和高效性。 展开更多
关键词 蜣螂优化算法 路径规划 Singer映射 邻域搜索策略 精英池-扰动策略
在线阅读 下载PDF
一种改进的跳点搜索移动机器人路径规划算法 被引量:3
10
作者 焦嵩鸣 梁嘉义 +2 位作者 杨晨渤 李真真 单正文 《信息与控制》 北大核心 2025年第3期525-535,共11页
针对跳点搜索(jump point search,JPS)算法路径存在斜向穿越障碍物、搜索过程中存在较多冗余跳点、路径拐点多且靠近障碍物的问题,提出一种安全快速的跳点搜索(safe fast jump point search,SFJPS)算法。该算法重新定义跳点判断规则,使... 针对跳点搜索(jump point search,JPS)算法路径存在斜向穿越障碍物、搜索过程中存在较多冗余跳点、路径拐点多且靠近障碍物的问题,提出一种安全快速的跳点搜索(safe fast jump point search,SFJPS)算法。该算法重新定义跳点判断规则,使生成的跳点均为安全跳点,解决了路径中斜向穿越障碍物的情况;加入基于角度的搜索方向优先级判断,有效减少了搜索过程中的冗余节点,加快了搜索速度;基于Bresenham算法对路径上的跳点进行关键跳点筛选,关键跳点生成的路径拐点明显减少,贴近障碍物的路径长度大幅减小,整体路径长度也有所减小。结果表明在不同场景下本文算法相较于A*算法和JPS算法,路径长度分别最大减小了5.42%和4.48%,搜索时间分别最大缩短了98.33%和67.83%,搜索节点数最大减少了99.08%和56.72%,路径拐点数分别最大减少了90.91%和83.33%。相较于Theta*算法路径长度增加了1.17%,搜索时间缩短了91.07%,搜索节点数减少了98.9%。仿真试验证明本文算法规划速度快,路径安全且拐点更少,更加适用于移动机器人路径规划问题。 展开更多
关键词 路径规划 跳点搜索 移动机器人 方向优先级 BRESENHAM算法
原文传递
动态环境下改进BIT^(*)算法的机器人路径规划 被引量:1
11
作者 王晓军 崔锡杰 李晓航 《计算机工程与应用》 北大核心 2025年第7期361-369,共9页
针对批量通知树算法在小样本中搜索路径成功率低、大样本中规划效率低、路径冗余节点多以及无法躲避未知障碍物的问题,提出动态环境批量通知树算法。利用改进批量采样点策略将样本点均匀等间距处理,并改进批量采样点数量以及偏置采样点... 针对批量通知树算法在小样本中搜索路径成功率低、大样本中规划效率低、路径冗余节点多以及无法躲避未知障碍物的问题,提出动态环境批量通知树算法。利用改进批量采样点策略将样本点均匀等间距处理,并改进批量采样点数量以及偏置采样点位置,弥补搜索路径成功率低的缺点;加入惩罚项改进启发式函数,弥补路径规划效率低的缺点;再引入路径拉伸优化减少路径长度以及冗余节点,缩小采样范围。面对未知障碍物,利用反向生长搜索树先验信息提出临时目标点选取策略,并结合改进随机点、转向角以及新节点的快速扩展随机树(RRT)算法,避免重规划路径过分偏离以及不能及时躲避。与其他算法进行对比,结果表明:动态环境批量通知树算法规划路径成功率和效率更高,路径长度和拐点数更少,躲避未知障碍物性能更高,重规划路径更接近全局路径。 展开更多
关键词 批量通知树算法 反向生长搜索树 批量采样点策略 启发式函数 快速扩展随机树(RRT)算法 路径重规划
在线阅读 下载PDF
基于跳点优化蚁群算法的菠萝田间导航路径规划 被引量:1
12
作者 刘天湖 赖嘉上 +4 位作者 孙伟龙 陈嘉鹏 梁兆正 刘舒阳 陈思远 《农业机械学报》 北大核心 2025年第4期387-396,共10页
针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地... 针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地图进行预处理,获得简化跳点;其次,通过简化跳点对栅格地图进行信息素初始化,以加强简化跳点的引导能力和减少前期盲目搜索;接着,设计蚂蚁死亡惩罚机制,以降低陷入死锁蚂蚁走过路径的信息素,减少死锁问题的发生;再者,通过重新设计启发式信息函数并引入分级式信息素因子改进状态转移概率函数,以提高收敛速度,缩短路径长度;最后,采用路径优化策略删减不必要路径节点,以进一步缩短路径长度、提升平滑度,提高路径质量。仿真结果表明,在简单环境中,JPOACO算法求得的路径长度较传统蚁群算法和另一种优化蚁群算法短约22.6%和2.0%,收敛迭代次数、收敛时间分别减少约77.0%、77.5%和49.3%、87.8%,零死亡迭代次数和零死亡时间较后者减少约19.5%和80.5%;在复杂菠萝种植环境中,JPOACO算法较传统蚁群算法和另一种优化蚁群算法求得的路径长度短16.6%和4.7%,收敛迭代次数、收敛时间分别减少约77.1%、17.4%和73.7%、47.4%,零死亡迭代次数和零死亡时间较后者减少约34.3%和58.2%,表明本文算法具有较高的适用性和可行性。 展开更多
关键词 菠萝园 路径规划 蚁群算法 跳点搜索算法 死锁
在线阅读 下载PDF
基于障碍密度优先策略改进A^(*)算法的AGV路径规划 被引量:1
13
作者 陈一馨 段宇轩 +2 位作者 刘豪 谭世界 郑天乐 《郑州大学学报(工学版)》 北大核心 2025年第2期26-34,共9页
针对传统A^(*)算法在障碍物较多的实际场景下进行AGV路径规划时,存在路径拐点多、路径冗余节点过多以及易陷入局部最优解等问题,提出一种改进A^(*)算法,采用栅格法进行环境建模。首先,在启发函数中引入障碍物密度函数K(n)改进代价函数,... 针对传统A^(*)算法在障碍物较多的实际场景下进行AGV路径规划时,存在路径拐点多、路径冗余节点过多以及易陷入局部最优解等问题,提出一种改进A^(*)算法,采用栅格法进行环境建模。首先,在启发函数中引入障碍物密度函数K(n)改进代价函数,用于更准确地估计当前节点到目标节点的实际代价;其次,采用动态邻域搜索策略提高算法的搜索效率和运行效率;最后,通过冗余节点处理策略减少路径拐点和删除冗余节点,得到只包含起点、转折点以及终点的路径。采用不同尺寸和复杂度的栅格环境地图进行仿真实验,结果表明:所提改进A^(*)算法与传统A^(*)算法以及其他改进的A^(*)算法相比,路径长度分别缩短了4.71%和2.07%,路径拐点数量分别减少了45.45%和20.54%,路径存在节点分别减少了82.24%和62.45%。 展开更多
关键词 路径规划 栅格地图 改进A^(*)算法 启发函数 动态邻域搜索 冗余节点优化
在线阅读 下载PDF
基于改进麻雀搜索算法的AUV路径规划方法 被引量:1
14
作者 唐李军 范云霞 +1 位作者 周星宇 孙骞 《中国舰船研究》 北大核心 2025年第3期275-287,共13页
[目的]针对复杂水下环境中自主水下航行器(AUV)三维路径规划算法存在的规划效果不理想、路径搜索不稳定等问题,提出一种基于改进麻雀搜索算法的AUV路径规划方法。[方法]推导评价区间响应的矢量分析方法公式,引入分段学习和量子计算机制... [目的]针对复杂水下环境中自主水下航行器(AUV)三维路径规划算法存在的规划效果不理想、路径搜索不稳定等问题,提出一种基于改进麻雀搜索算法的AUV路径规划方法。[方法]推导评价区间响应的矢量分析方法公式,引入分段学习和量子计算机制,改进经典麻雀搜索算法的更新公式。通过汤普森采样策略动态更新种群数量。在复杂洋流环境中进行仿真测试,验证改进算法的有效性。[结果]测试结果表明,改进算法的平均最长航行时间较改进前缩短49.88%,在极端突变的洋流环境下,路径规划失败率降低10.6%。[结论]研究成果揭示了该方法具有较强的全局搜索能力和寻优性能、算法收敛性能较好,具备高效的路径规划能力,对AUV以及其他领域的路径规划问题有借鉴意义。 展开更多
关键词 自主水下航行器 三维路径规划 麻雀搜索算法 区间优化 矢量分析法 运动规划
在线阅读 下载PDF
多目标多智能体路径规划方法
15
作者 张静 王祎 +1 位作者 陈子龙 李云松 《浙江大学学报(工学版)》 北大核心 2025年第8期1689-1697,共9页
为了实现高效地将任务分配给每个智能体,为智能体规划出尽可能短且不与其他智能体发生碰撞的路径,提出多目标多智能体路径规划方法.针对传统路径规划算法使用离散时间导致成功率低的问题,该算法定义连续时间下智能体间的冲突定义与解冲... 为了实现高效地将任务分配给每个智能体,为智能体规划出尽可能短且不与其他智能体发生碰撞的路径,提出多目标多智能体路径规划方法.针对传统路径规划算法使用离散时间导致成功率低的问题,该算法定义连续时间下智能体间的冲突定义与解冲突方式,在A^(*)算法的基础上引入安全间隔与标签的概念,使得A^(*)算法可以规划出满足连续时间约束的最优路径.针对多智能体路径规划问题中因碰撞检测、冲突避免造成的较大计算量,提出冲突分级策略,减少了算法求解过程中扩展的节点数量.实验结果表明,利用所提出的算法能够求解得到更优的解决方案,且该算法具有更好的适用性;在智能体分布密集的场景下,该算法表现出更低的路径总成本和更高的求解成功率. 展开更多
关键词 多智能体系统 路径规划 任务分配 改进A^(*)算法 冲突搜索
在线阅读 下载PDF
轨道交通路径流量分配的数据挖掘模型研究 被引量:1
16
作者 李淑庆 李振东 牟保卫 《信息技术》 2025年第5期20-25,32,共7页
文中提出一种基于数据挖掘的轨道交通路径流量分配模型。使用DFS算法提取有效路径,利用多路径时间分布差异性构建高斯混合模型;针对其易陷入局部最优问题引入模糊聚类标定初值,使用EM算法求解;提取重庆市OD客流的AFC数据,计算多路径客流... 文中提出一种基于数据挖掘的轨道交通路径流量分配模型。使用DFS算法提取有效路径,利用多路径时间分布差异性构建高斯混合模型;针对其易陷入局部最优问题引入模糊聚类标定初值,使用EM算法求解;提取重庆市OD客流的AFC数据,计算多路径客流量,利用乘客总出行时间验证模型准确率及效率,研究发现,同迭代水平下,此模型相较高斯混合模型误差率分别降低了0.35%、0.15%,迭代收敛速度至少提升44.38%。分配结果显示,对于时间相近的不同路径,乘客更大概率会选择出行总时间较少、换乘少的路线。 展开更多
关键词 轨道交通路径流量分配 数据挖掘 深度优先搜索(DFS) 高斯混合模型 模糊聚类算法
在线阅读 下载PDF
“货箱到人”系统单工作台任务调度问题的混合遗传自适应大规模邻域搜索算法
17
作者 余玉刚 刘伟廷 罗云琪 《系统管理学报》 北大核心 2025年第4期994-1010,共17页
针对“货箱到人”仓储系统单工作台任务调度问题,特别是在多路径混合下的实际调度场景,研究探讨了特殊的多行程混合回程的车辆路径问题。首先,考虑开闭混合的路径模式,构建了旨在最小化机器人去/回程混合任务最大完成时间的整数线性规... 针对“货箱到人”仓储系统单工作台任务调度问题,特别是在多路径混合下的实际调度场景,研究探讨了特殊的多行程混合回程的车辆路径问题。首先,考虑开闭混合的路径模式,构建了旨在最小化机器人去/回程混合任务最大完成时间的整数线性规划模型。其次,基于模型中机器人执行出/入库任务的取放特征,提出混合遗传自适应大规模邻域搜索算法。该算法通过遗传算法的种群管理机制改进自适应大规模邻域搜索算法,以避免其过早陷入局部最优,同时平衡邻域搜索收敛速度与种群收敛性。最后,通过不同规模仿真算例的模拟与对比分析,验证了所提模型与方法的有效性,并与不同基线方法进行实验对比。结果表明,该算法在收敛性、稳定性及收敛速度方面均有显著提升。研究成果可为“货箱到人”仓储系统中机器人单工作台任务调度研究提供方法参考与决策支持。 展开更多
关键词 半自动存储检索系统 多路径混合式 遗传算法 大规模邻域搜索算法
在线阅读 下载PDF
基于蚁群优化算法的多无人机侦察打击任务仿真系统设计与实现
18
作者 张永晋 瞿崇晓 +2 位作者 范长军 褚进琦 刘硕 《现代电子技术》 北大核心 2025年第15期18-26,共9页
察打一体化无人机集群在现代战争中应用的潜力巨大,但其大规模部署和实战演练的过程复杂,且耗费大量资源。受蚁群觅食行为启发,文中设计并实现了一套基于蚁群优化算法的多无人机侦察打击任务仿真系统,旨在提供一个真实、灵活且直观易用... 察打一体化无人机集群在现代战争中应用的潜力巨大,但其大规模部署和实战演练的过程复杂,且耗费大量资源。受蚁群觅食行为启发,文中设计并实现了一套基于蚁群优化算法的多无人机侦察打击任务仿真系统,旨在提供一个真实、灵活且直观易用的基准平台,以支持多无人机协同任务的仿真和评估。首先,介绍蚁群优化算法的基本原理,并在此基础上设计无人机集群执行察打任务的仿真流程;接着,构建仿真系统的整体架构,研发相应的机群协同智能算法,以优化察打过程中的路径规划,并利用LÖVE 2D框架开发交互式仿真系统;最后,展示三种具有代表性场景下的模拟效果,并进行系统性定量分析。结果表明,该系统能够为用户提供便捷高效的察打任务仿真,助力不同场景下的作战策略评估与优化。 展开更多
关键词 蚁群优化算法 无人机集群 侦察打击任务 路径规划 交互式仿真 协同智能
在线阅读 下载PDF
基于改进麻雀搜索算法的移动机器人路径规划研究
19
作者 程晶晶 周明龙 邓雄峰 《太原学院学报(自然科学版)》 2025年第4期14-20,共7页
为解决传统麻雀搜索算法应用于移动机器人路径规划存在的易陷入局部最优问题,对麻雀搜索算法进行改进。改进算法在种群初始化阶段引入循环映射,使得初始种群在搜索空间分布更加均匀;在追随者位置更新中引入莱维飞行策略,提高全局搜索能... 为解决传统麻雀搜索算法应用于移动机器人路径规划存在的易陷入局部最优问题,对麻雀搜索算法进行改进。改进算法在种群初始化阶段引入循环映射,使得初始种群在搜索空间分布更加均匀;在追随者位置更新中引入莱维飞行策略,提高全局搜索能力。为加快算法收敛速度引入t分布的随机干扰项。构建了路径长度和转向次数加权的目标函数,实现路径规划的求解。将移动机器人看作质点,对比所提出的改进算法和其它算法所规划的移动路径。结果表明,改进麻雀搜索算法在路径长度以及路径平滑性方面均优于对比算法,能够规划更加有效、更加稳健的移动路径。 展开更多
关键词 改进麻雀搜索算法 移动机器人 路径规划
在线阅读 下载PDF
基于改进引力搜索算法和BDI模型的三维艺术动画群体路径控制
20
作者 胡雷钢 陈欣 《贵阳学院学报(自然科学版)》 2025年第1期99-104,共6页
三维艺术动画制作中,群体行为的路径控制需要具备能够模拟智能体路径规划的方式,并处理场景中大量个体之间的交互,防止智能体相互碰撞。为此,提出了基于智能体推理模型BDI(信念—愿望—意图)和改进引力搜索算法(GSA)的三维艺术动画中群... 三维艺术动画制作中,群体行为的路径控制需要具备能够模拟智能体路径规划的方式,并处理场景中大量个体之间的交互,防止智能体相互碰撞。为此,提出了基于智能体推理模型BDI(信念—愿望—意图)和改进引力搜索算法(GSA)的三维艺术动画中群体路径控制框架。使用改进GSA完成初级路径规划,通过BDI提供高级决策机制,使得智能体不仅能够高效地规划路径,还能在动态变化的环境中进行实时调整。实验结果表明,所提EGSA算法在经典测试函数中的性能显著优于其他比较算法,展示了其在路径优化方面的优越性。此外,使用Unity3D进行的仿真实验结果表明,所提方法能够在三维艺术动画场景中高效地模拟大量智能体的行为,尤其在处理高密度群体交互时表现出色,显著改善了处理时间,提高了系统的整体性能。所提框架不仅为三维艺术动画的群体行为控制提供了一种有效的解决方案,也为进一步研究和应用智能体路径规划与决策提供了参考。 展开更多
关键词 三维艺术动画 BDI模型 引力搜索算法 路径规划 碰撞避免
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部