期刊文献+
共找到744篇文章
< 1 2 38 >
每页显示 20 50 100
An Intelligent Multi-robot Path Planning in a Dynamic Environment Using Improved Gravitational Search Algorithm 被引量:5
1
作者 P.K.Das H.S.Behera +1 位作者 P.K.Jena B.K.Panigrahi 《International Journal of Automation and computing》 EI CSCD 2021年第6期1032-1044,共13页
This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based... This paper proposes a new methodology to optimize trajectory of the path for multi-robots using improved gravitational search algorithm(IGSA) in clutter environment. Classical GSA has been improved in this paper based on the communication and memory characteristics of particle swarm optimization(PSO). IGSA technique is incorporated into the multi-robot system in a dynamic framework, which will provide robust performance, self-deterministic cooperation, and coping with an inhospitable environment. The robots in the team make independent decisions, coordinate, and cooperate with each other to accomplish a common goal using the developed IGSA. A path planning scheme has been developed using IGSA to optimally obtain the succeeding positions of the robots from the existing position in the proposed environment. Finally, the analytical and experimental results of the multi-robot path planning were compared with those obtained by IGSA, GSA and differential evolution(DE) in a similar environment. The simulation and the Khepera environment result show outperforms of IGSA as compared to GSA and DE with respect to the average total trajectory path deviation, average uncovered trajectory target distance and energy optimization in terms of rotation. 展开更多
关键词 Gravitational search algorithm multi-robot path planning average total trajectory path deviation average uncovered trajectory target distance average path length
原文传递
Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm 被引量:1
2
作者 Xiaoge Wei Yuming Zhang +2 位作者 Huaitao Song Hengjie Qin Guanjun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1295-1316,共22页
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi... Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential. 展开更多
关键词 Sparrow search algorithm optimization and improvement function test set evacuation path planning
在线阅读 下载PDF
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
3
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth Sorting Fast search algorithm Underwater gravity-aided navigation path planning efficiency Quick Rapidly-exploring Random Trees*(QRRT*)
在线阅读 下载PDF
A Modified Self-Adaptive Sparrow Search Algorithm for Robust Multi-UAV Path Planning
4
作者 SUN Zhiyuan SHEN Bo +2 位作者 PAN Anqi XUE Jiankai MA Yuhang 《Journal of Donghua University(English Edition)》 CAS 2024年第6期630-643,共14页
With the advancement of technology,the collaboration of multiple unmanned aerial vehicles(multi-UAVs)is a general trend,both in military and civilian domains.Path planning is a crucial step for multi-UAV mission execu... With the advancement of technology,the collaboration of multiple unmanned aerial vehicles(multi-UAVs)is a general trend,both in military and civilian domains.Path planning is a crucial step for multi-UAV mission execution,it is a nonlinear problem with constraints.Traditional optimization algorithms have difficulty in finding the optimal solution that minimizes the cost function under various constraints.At the same time,robustness should be taken into account to ensure the reliable and safe operation of the UAVs.In this paper,a self-adaptive sparrow search algorithm(SSA),denoted as DRSSA,is presented.During optimization,a dynamic population strategy is used to allocate the searching effort between exploration and exploitation;a t-distribution perturbation coefficient is proposed to adaptively adjust the exploration range;a random learning strategy is used to help the algorithm from falling into the vicinity of the origin and local optimums.The convergence of DRSSA is tested by 29 test functions from the Institute of Electrical and Electronics Engineers(IEEE)Congress on Evolutionary Computation(CEC)2017 benchmark suite.Furthermore,a stochastic optimization strategy is introduced to enhance safety in the path by accounting for potential perturbations.Two sets of simulation experiments on multi-UAV path planning in three-dimensional environments demonstrate that the algorithm exhibits strong optimization capabilities and robustness in dealing with uncertain situations. 展开更多
关键词 multiple unmanned aerial vehicle(multi-UAV) path planning sparrow search algorithm(SSA) stochastic optimization
在线阅读 下载PDF
Biologically Inspired Node Generation Algorithm for Path Planning of Hyper-redundant Manipulators Using Probabilistic Roadmap 被引量:2
5
作者 Eric Lanteigne Amor Jnifene 《International Journal of Automation and computing》 EI CSCD 2014年第2期153-161,共9页
This article describes a biologically inspired node generator for the path planning of serially connected hyper-redundant manipulators using probabilistic roadmap planners. The generator searches the configuration spa... This article describes a biologically inspired node generator for the path planning of serially connected hyper-redundant manipulators using probabilistic roadmap planners. The generator searches the configuration space surrounding existing nodes in the roadmap and uses a combination of random and deterministic search methods that emulate the behaviour of octopus limbs. The strategy consists of randomly mutating the states of the links near the end-effector, and mutating the states of the links near the base of the robot toward the states of the goal configuration. When combined with the small tree probabilistic roadmap planner, the method was successfully used to solve the narrow passage motion planning problem of a 17 degree-of-freedom manipulator. 展开更多
关键词 path planning hyper-redundant manipulators probabilistic road map(PRM) quasi-deterministic node generation bi-directional search algorithm.
原文传递
Elite Dung Beetle Optimization Algorithm for Multi-UAV Cooperative Search in Mountainous Environments 被引量:3
6
作者 Xiaoyong Zhang Wei Yue 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1677-1694,共18页
This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using th... This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation. 展开更多
关键词 Mountainous environment Multi-UAV cooperative search Environment information consistency Elite dung beetle optimization algorithm(EDBOA) path planning
在线阅读 下载PDF
Grid-Based Path Planner Using Multivariant Optimization Algorithm
7
作者 Baolei Li Danjv Lv +3 位作者 Xinling Shi Zhenzhou An Yufeng Zhang Jianhua Chen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第5期89-96,共8页
To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) an... To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) and a modified indirect encoding scheme are proposed. In MOA,the solution space is iteratively searched through global exploration and local exploitation by intelligent searching individuals,who are named as atoms. MOA is employed to locate the shortest path through iterations of global path planning and local path refinements in the proposed path planning approach. In each iteration,a group of global atoms are employed to perform the global path planning aiming at finding some candidate paths rapidly and then a group of local atoms are allotted to each candidate path for refinement. Further,the traditional indirect encoding scheme is modified to reduce the possibility of constructing an infeasible path from an array. Comparative experiments against two other frequently use intelligent optimization approaches: Genetic Algorithm( GA) and Particle Swarm Optimization( PSO) are conducted on benchmark test problems of varying complexity to evaluate the performance of MOA. The results demonstrate that MOA outperforms GA and PSO in terms of optimality indicated by the length of the located path. 展开更多
关键词 multivariant optimization algorithm shortest path planning heuristic search grid map optimality of algorithm
在线阅读 下载PDF
地下空间异构无人系统分布式协同搜索路径规划方法
8
作者 詹浩 周同乐 +1 位作者 陈谋 杨家文 《哈尔滨工业大学学报》 北大核心 2026年第1期12-23,共12页
为解决地下空间中空地异构无人系统协同区域搜索效率低下的问题,本文综合考虑空中与地面障碍物的双重约束,构建了三维栅格地下空间模型。基于此,利用自适应高度的无人系统三维传感器模型,量化分析了探测距离对探测性能的影响,并采用信... 为解决地下空间中空地异构无人系统协同区域搜索效率低下的问题,本文综合考虑空中与地面障碍物的双重约束,构建了三维栅格地下空间模型。基于此,利用自适应高度的无人系统三维传感器模型,量化分析了探测距离对探测性能的影响,并采用信息素图机制,通过信息素的扩散与挥发动态更新环境信息。在分布式模型预测控制(distributed model predictive control,DMPC)框架下,融合差分变异、三角形游走、高斯扰动和t分布自适应扰动策略,提出了一种融合信息素图机制的改进人工旅鼠算法(improved artificial lemming algorithm-pheromone map,IDALA-PM),以实现多空地异构无人系统的分布式实时路径规划。仿真结果表明,所提出的IDALA-PM算法能够有效完成地下空间搜索任务,相比传统算法,搜索效率提高了54.2%。 展开更多
关键词 地下空间 空地异构无人系统 协同搜索路径规划 DMPC IDALA-PM
在线阅读 下载PDF
基于改进混合A^(*)算法的无人船路径规划
9
作者 安焱恒 孙晓界 +3 位作者 唐治齐 徐林 张皓翔 慕东东 《沈阳理工大学学报》 2026年第1期31-35,43,共6页
针对传统A^(*)算法在无人船路径规划中存在转折点过多、路径平滑度不足以及规划效率低下等问题,提出一种改进的混合A^(*)算法。在搜索过程中交替运用四邻域和八邻域策略,有效减少路径中的转折点数量,增强路径探索的灵活性与全面性,突破... 针对传统A^(*)算法在无人船路径规划中存在转折点过多、路径平滑度不足以及规划效率低下等问题,提出一种改进的混合A^(*)算法。在搜索过程中交替运用四邻域和八邻域策略,有效减少路径中的转折点数量,增强路径探索的灵活性与全面性,突破单一邻域搜索的局限性;优化A^(*)算法的估价函数,将启发式搜索与路径优化策略相结合,提升路径规划的效率和适应性。实验结果表明,与传统A^(*)算法相比,改进后的混合A^(*)算法充分考虑了无人船的运动约束,在路径长度和探索节点数等方面均展现出优势,生成的路径更加平滑,对复杂环境的适应性更强。 展开更多
关键词 无人船 路径规划 混合A^(*)算法 四八邻域 交替搜索
在线阅读 下载PDF
Rectangle expansion A* pathfinding for grid maps 被引量:12
10
作者 Zhang An Li Chong Bi Wenhao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1385-1396,共12页
Search speed, quality of resulting paths and the cost of pre-processing are the principle evaluation metrics of a pathfinding algorithm. In this paper, a new algorithm for grid-based maps, rectangle expansion A* (RE... Search speed, quality of resulting paths and the cost of pre-processing are the principle evaluation metrics of a pathfinding algorithm. In this paper, a new algorithm for grid-based maps, rectangle expansion A* (REA*), is presented that improves the performance of A* significantly. REA* explores maps in units of unblocked rectangles. All unnecessary points inside the rectangles are pruned and boundaries of the rectangles (instead of individual points within those boundaries) are used as search nodes. This makes the algorithm plot fewer points and have a much shorter open list than A*. REA* returns jump and grid-optimal path points, but since the line of sight between jump points is protected by the unblocked rectangles, the resulting path of REA" is usually better than grid-optimal. The algorithm is entirely online and requires no offline pre-processing. Experimental results for typical benchmark problem sets show that REA* can speed up a highly optimized A* by an order of magnitude and more while preserving completeness and optimality. This new algorithm is competitive with other highly successful variants of A*. 展开更多
关键词 Breaking path symmetries Grid Heuristic algorithms path search Variant of A*
原文传递
A data transmission scheduling algorithm for rapid-response earth-observing operations 被引量:22
11
作者 Li Jun Li Jun +1 位作者 Chen Hao Jing Ning 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第2期349-364,共16页
With the development of rapid-response Earth-observing techniques, the demand for reducing a requirements-tasking-effects cycle from 1 day to hours grows rapidly. For instance, a satellite user always wants to receive... With the development of rapid-response Earth-observing techniques, the demand for reducing a requirements-tasking-effects cycle from 1 day to hours grows rapidly. For instance, a satellite user always wants to receive requested data in near real-time to support their urgent mis- sions, such as dealing with wildfires, volcanoes, flooding events, etc. In this paper, we try to reduce data transmission time for achieving this goal. The new feature of a responsive satellite is that users can receive signals from it directly. Therefore, the traditional satellite control and operational tech- niques need to be improved to accommodate these changes in user needs and technical upgrading. With that in mind, a data transmission topological model is constructed. Based on this model, we can deal with the satellite data transmission problem as a multi-constraint and multi-objective path- scheduling problem. However, there are many optional data transmission paths for each target based on this model, and the shortest path is preferred. In addition, satellites represent scarce resources that must be carefully scheduled in order to satisfy as many consumer requests as possible. To efficiently balance response time and resource utilization, a K-shortest path genetic algorithm is proposed for solving the data transmission problem. Simulations and analysis show the feasibility and the adaptability of the proposed approach. 展开更多
关键词 Data transmission in nearreal-time Genetic algorithm k-shortest path Operationally responsivespace Remote sensing SCHEDULING
原文传递
Implementation and comparative testing of turn-based algorithm for logit network loading
12
作者 顾程 任刚 《Journal of Southeast University(English Edition)》 EI CAS 2011年第3期316-321,共6页
In order to evaluate the practicality and effectiveness of the turn-based algorithm for logit loading (TALL), the TALL is implemented using C++, and it is compared with a combination of the network-expanding metho... In order to evaluate the practicality and effectiveness of the turn-based algorithm for logit loading (TALL), the TALL is implemented using C++, and it is compared with a combination of the network-expanding method and the Dial algorithm based on the analysis of algorithm procedures. The TALL uses the arc-labeling shortest path searching, bidirectional star and the deque structure to directly assign the traffic flow, while the Dial algorithm should be used in an expanded network. The test results over realistic networks of eight cities show the superior performance of the TALL algorithm over the combination of the network-expanding method and the Dial algorithm, and the average processing time is reduced by 55. 4%. Furthermore, it is found that the operational efficiency of the TALL relates to the original densities of the cities. The average processing time is reduced by 65. 1% when the original density is about 14%, but the advantage of the TALL is not obvious with the increase in the original density. 展开更多
关键词 TALL algorithm network expanding deque structure bidirectional star arc-labeling shortest path searching
在线阅读 下载PDF
A~*算法在Shortest-Path方面的优化研究 被引量:4
13
作者 梁昭阳 蓝茂俊 陈正铭 《计算机系统应用》 2018年第7期255-259,共5页
在游戏和地理信息系统开发等领域中,专门针对最短路径搜索方面的优化研究较多,尤其是最短路径中启发式搜索算法中的A*算法的效率优化研究.本文将针对在人工智能或算法研究中的使用的地图大多数是基于任意图而不是网格图的状况,通过任意... 在游戏和地理信息系统开发等领域中,专门针对最短路径搜索方面的优化研究较多,尤其是最短路径中启发式搜索算法中的A*算法的效率优化研究.本文将针对在人工智能或算法研究中的使用的地图大多数是基于任意图而不是网格图的状况,通过任意图与网格图及方向的相结合,提出了三种优化A*算法的启发式函数搜索策略,较好地减小了算法搜索的范围和规模,有效地提高了A*算法的运行效率.最后的实验结果显示,与传统的A*算法相比较,优化启发搜索策略后的A*算法寻径更快速,更准确,计算效率更高. 展开更多
关键词 启发式搜索策略 A^*算法 方向 最短路径搜索
在线阅读 下载PDF
Path Planning of the Multiple Mobile Robot System Applied in Chinese Chess Game 被引量:1
14
作者 Jr-Hong Guo Kuo-Lan Su Sheng-Ven Shiau 《Journal of Mechanics Engineering and Automation》 2011年第3期217-226,共10页
The article presents the path planning algorithm to be applied in the Chinese chess game, and uses multiple mobile robots to present the experimental scenario. Users play the Chinese chess game using the mouse on the ... The article presents the path planning algorithm to be applied in the Chinese chess game, and uses multiple mobile robots to present the experimental scenario. Users play the Chinese chess game using the mouse on the supervised computer. The supervised computer programs the motion paths using A* searching algorithm, and controls mobile robots moving on the grid based chessboard platform via wireless radio frequency (RF) interface. The A* searching algorithm solves shortest path problems of mobile robots from the start point to the target point, and avoids the obstacles on the chessboard platform. The supervised computer calculates the total time to play the game, and computes the residual time to play chess in the step for each player. The simulation results can fired out the shortest motion paths of the mobile robots (chesses) moving to target points from start points in the monitor, and decides the motion path to be existence or not. The eaten chess can moves to the assigned position, and uses the A* searching algorithm to program the motion path, too. Finally, the authors implement the simulation results on the chessboard platform using mobile robots. Users can play the Chinese chess game on the supervised computer according to the Chinese chess game rule, and play each step of the game in the assigned time. The supervised computer can suggests which player don't obey the rules of the game, and decides which player to be a winner. The scenario of the Chinese chess game feedback to the user interface using the image system. 展开更多
关键词 path planning Chinese chess game multiple mobile robots A* searching algorithm wireless RF (radio frequency) interface.
在线阅读 下载PDF
RESEARCH ON JUMPING SEQUENCE PLANNING ISSUES OF HOPPING ROBOTS
15
作者 LIUZhuang-zhi ZHUJian-ying 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第2期116-121,共6页
The wheeled or crawled robots often suffer from big obstacles or ditches, so a hopping robot needs to fit the tough landform in the field environments. In order to jump over obstacles rapidly, a jumping sequence must ... The wheeled or crawled robots often suffer from big obstacles or ditches, so a hopping robot needs to fit the tough landform in the field environments. In order to jump over obstacles rapidly, a jumping sequence must be generated based on the landform information from sensors or user input. The planning method for planar mobile robots is compared with that of hopping robots. Several factors can change the planning result. Adjusting these coefficients, a heuristic searching algorithm for the jumping sequence is developed on a simplified landform. Calculational result indicates that the algorithm can achieve safety and efficient control sequences for a desired goal. 展开更多
关键词 ROBOTS path planning algorithm heuristic search
在线阅读 下载PDF
A path planning method for robot patrol inspection in chemical industrial parks
16
作者 王伟峰 YANG Ze +1 位作者 LI Zhao ZHAO Xuanchong 《High Technology Letters》 EI CAS 2024年第2期109-116,共8页
Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to... Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to harsh environment,are widely applied in such parks.However,they rely on manual readings which have problems like heavy patrol workload,high labor cost,high false positives/negatives and poor timeliness.To address the above problems,this study proposes a path planning method for robot patrol in chemical industrial parks,where a path optimization model based on improved iterated local search and random variable neighborhood descent(ILS-RVND)algorithm is established by integrating the actual requirements of patrol tasks in chemical industrial parks.Further,the effectiveness of the model and algorithm is verified by taking real park data as an example.The results show that compared with GA and ILS-RVND,the improved algorithm reduces quantification cost by about 24%and saves patrol time by about 36%.Apart from shortening the patrol time of robots,optimizing their patrol path and reducing their maintenance loss,the proposed algorithm also avoids the untimely patrol of robots and enhances the safety factor of equipment. 展开更多
关键词 path planning robot patrol inspection iterated local search and random variableneighborhood descent(ILS-RVND)algorithm
在线阅读 下载PDF
Complete Coverage Path Planning Based on Improved Area Division
17
作者 Lihuan Ma Zhuo Sun Yuan Gao 《World Journal of Engineering and Technology》 2023年第4期965-975,共11页
It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the bous... It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the boustrophedon cell decomposition method is used to partition the map into sub-regions. The complete coverage paths within each sub-region are obtained by the Boustrophedon back-and-forth motions, and the order of traversal of the sub-regions is then described as a generalised traveling salesman problem with pickup and delivery based on the relative positions of the vertices of each sub-region. An adaptive large neighbourhood algorithm is proposed to quickly obtain solution results in traversal order. The effectiveness of the improved algorithm on traversal cost reduction is verified in this paper through multiple sets of experiments. . 展开更多
关键词 Generalized Traveling Salesman Problem with Pickup and Delivery Com-plete Coverage path Planning Boustrophedon Cellular Decomposition Adaptive Large-Neighborhood search algorithm Mobile Robot
在线阅读 下载PDF
基于邻域搜索策略的蜣螂优化算法及应用 被引量:1
18
作者 杜晓昕 牛丽明 +3 位作者 王波 王一萍 李长荣 王振飞 《广西师范大学学报(自然科学版)》 北大核心 2025年第2期149-167,共19页
针对蜣螂优化算法存在收敛速度慢,容易陷入局部最优,且全局探索能力较弱等问题,受领导者-追随者策略(leader-follower)的启发,本文提出一种基于邻域搜索策略的蜣螂优化算法。首先,引入Singer映射初始化种群,提高初始解的质量,提高算法... 针对蜣螂优化算法存在收敛速度慢,容易陷入局部最优,且全局探索能力较弱等问题,受领导者-追随者策略(leader-follower)的启发,本文提出一种基于邻域搜索策略的蜣螂优化算法。首先,引入Singer映射初始化种群,提高初始解的质量,提高算法的收敛速度;其次,提出一种邻域搜索策略来增强种群多样性,跳出局部收敛,提高算法的局部开发能力;最后,设计一种精英池-扰动策略来扩大搜索范围,增强算法的全局勘探和局部寻优能力,提高算法的求解效率及求解精度。为了验证所提算法的有效性,本文设计一系列实验来验证所提算法的性能,结果表明,该算法在寻优精度和收敛速度方面有较大提升。将该算法应用于无人机三维路径规划问题,实验结果表明,该算法在处理实际应用问题时表现出了有效性和高效性。 展开更多
关键词 蜣螂优化算法 路径规划 Singer映射 邻域搜索策略 精英池-扰动策略
在线阅读 下载PDF
基于跳点优化蚁群算法的菠萝田间导航路径规划 被引量:3
19
作者 刘天湖 赖嘉上 +4 位作者 孙伟龙 陈嘉鹏 梁兆正 刘舒阳 陈思远 《农业机械学报》 北大核心 2025年第4期387-396,共10页
针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地... 针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地图进行预处理,获得简化跳点;其次,通过简化跳点对栅格地图进行信息素初始化,以加强简化跳点的引导能力和减少前期盲目搜索;接着,设计蚂蚁死亡惩罚机制,以降低陷入死锁蚂蚁走过路径的信息素,减少死锁问题的发生;再者,通过重新设计启发式信息函数并引入分级式信息素因子改进状态转移概率函数,以提高收敛速度,缩短路径长度;最后,采用路径优化策略删减不必要路径节点,以进一步缩短路径长度、提升平滑度,提高路径质量。仿真结果表明,在简单环境中,JPOACO算法求得的路径长度较传统蚁群算法和另一种优化蚁群算法短约22.6%和2.0%,收敛迭代次数、收敛时间分别减少约77.0%、77.5%和49.3%、87.8%,零死亡迭代次数和零死亡时间较后者减少约19.5%和80.5%;在复杂菠萝种植环境中,JPOACO算法较传统蚁群算法和另一种优化蚁群算法求得的路径长度短16.6%和4.7%,收敛迭代次数、收敛时间分别减少约77.1%、17.4%和73.7%、47.4%,零死亡迭代次数和零死亡时间较后者减少约34.3%和58.2%,表明本文算法具有较高的适用性和可行性。 展开更多
关键词 菠萝园 路径规划 蚁群算法 跳点搜索算法 死锁
在线阅读 下载PDF
Railway station route searching based on ACA
20
作者 WANG Feng 《通讯和计算机(中英文版)》 2009年第8期54-58,共5页
关键词 火车站 路线 磷脂 基础 最短路径搜索 信号系统 搜索算法 蚁群算法
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部