期刊文献+
共找到1,214篇文章
< 1 2 61 >
每页显示 20 50 100
Genetic-algorithm-based approaches for enhancing fairness and efficiency in dynamic airport slot allocation
1
作者 Ruoshi YANG Zhiqiang FENG +2 位作者 Meilong LE Hongyan ZHANG Ji MA 《Chinese Journal of Aeronautics》 2025年第8期542-562,共21页
Airports around the world commonly face challenges in managing airport slot allocation.Effective management of limited slot resources by civil aviation authority often requires redistributing requested slots among air... Airports around the world commonly face challenges in managing airport slot allocation.Effective management of limited slot resources by civil aviation authority often requires redistributing requested slots among airlines.The allocation process must operate within the prescribed capacity limits of the airport while adhering to established priorities and regulations.Additionally,ensuring market fairness is a key objective,as the value of airport slots plays a significant role in the adjustment process.This transforms the traditional time-shift-based problem into a complex multi-objective optimization problem.Addressing such complications is of significant importance to airlines,airports,and passengers alike.Due to the complexity of fairness metrics,traditional integer programming models encounter difficulties in finding effective solutions.This study proposes a neighborhood search strategy to tackle the single airport slot allocation,making it adaptable to both static and rolling capacity scenarios.Two Genetic Algorithms(GAs)are introduced,corresponding to time adjustment and sequence adjustment strategies,respectively.The GA based on the time adjustment strategy demonstrates high robustness,while the sequence adjustment strategy builds upon this GA to develop a simple heuristic algorithm that offers rapid convergence.Case studies conducted at seven airports in China confirm that all three algorithms yield high-quality adjustment solutions suitable for the majority of applications.Further,Pareto analysis reveals that these algorithms effectively balance the adjustment shifts and fairness metrics,demonstrating high practical value and broad applicability. 展开更多
关键词 Air traffic management Airport slot allocation Genetic algorithm neighborhood search Rolling horizon
原文传递
A method for inversion of layered shear wavespeed azimuthal anisotropy from Rayleigh wave dispersion using the Neighborhood Algorithm 被引量:4
2
作者 Huajian Yao 《Earthquake Science》 CSCD 2015年第1期59-69,共11页
Seismic anisotropy provides important constraints on deformation patterns of Earth's material. Rayleigh wave dispersion data with azimuthal anisotropy can be used to invert for depth-dependent shear wavespeed azimuth... Seismic anisotropy provides important constraints on deformation patterns of Earth's material. Rayleigh wave dispersion data with azimuthal anisotropy can be used to invert for depth-dependent shear wavespeed azimuthal anisotropy, therefore reflecting depth-varying deformation patterns in the crust and upper mantle. In this study, we propose a two-step method that uses the Neighborhood Algorithm (NA) for the point-wise inversion of depth-dependent shear wavespeeds and azimuthal anisotropy from Rayleigh wave azimuthally anisotropic dispersion data. The first step employs the NA to estimate depth- dependent Vsv (or the elastic parameter L) as well as their uncertainties from the isotropic part Rayleigh wave dispersion data. In the second step, we first adopt a difference scheme to compute approximate Rayleigh-wave phase velocity sensitivity kernels to azimuthally anisotropic parameters with respect to the velocity model obtained in the first step. Then we perform the NA to estimate the azimuthally anisotropic parameters Gc/L and Gs/L at depths separately from the corresponding cosine and sine terms of the azimuthally anisotropic dispersion data. Finally, we compute the depth-dependent magnitude and fast polariza- tion azimuth of shear wavespeed azimuthal anisotropy. The use of the global search NA and Bayesian analysis allows for more reliable estimates of depth-dependent shear wavespeeds and azimuthal anisotropy as well as their uncertainties.We illustrate the inversion method using the azimuthally anisotropic dispersion data in SE Tibet, where we find apparent changes of fast axes of shear wavespeed azimuthal anisotropy between the crust and uppermost mantle. 展开更多
关键词 Azimuthal anisotropy Shear wavespeed Rayleigh wave neighborhood algorithm
在线阅读 下载PDF
Real-Time Spreading Thickness Monitoring of High-core Rockfill Dam Based on K-nearest Neighbor Algorithm 被引量:4
3
作者 Denghua Zhong Rongxiang Du +2 位作者 Bo Cui Binping Wu Tao Guan 《Transactions of Tianjin University》 EI CAS 2018年第3期282-289,共8页
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and... During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface. 展开更多
关键词 Core rockfill dam Dam storehouse surface construction Spreading thickness k-nearest neighbor algorithm Real-time monitor
在线阅读 下载PDF
A Multiple-Neighborhood-Based Parallel Composite Local Search Algorithm for Timetable Problem
4
作者 颜鹤 郁松年 《Journal of Shanghai University(English Edition)》 CAS 2004年第3期301-308,共8页
This paper presents a parallel composite local search algorithm based on multiple search neighborhoods to solve a special kind of timetable problem. The new algorithm can also effectively solve those problems that can... This paper presents a parallel composite local search algorithm based on multiple search neighborhoods to solve a special kind of timetable problem. The new algorithm can also effectively solve those problems that can be solved by general local search algorithms. Experimental results show that the new algorithm can generate better solutions than general local search algorithms. 展开更多
关键词 multiple neighborhoods PARALLEL composite local search algorithm timetable problem.
在线阅读 下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
5
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
在线阅读 下载PDF
Condition Monitoring of Roller Bearing by K-star Classifier andK-nearest Neighborhood Classifier Using Sound Signal
6
作者 Rahul Kumar Sharma V.Sugumaran +1 位作者 Hemantha Kumar M.Amarnath 《Structural Durability & Health Monitoring》 EI 2017年第1期1-17,共17页
Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is v... Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is very important. In present study soundsignal is used to continuously monitor bearing health as sound signals of rotatingmachineries carry dynamic information of components. There are numerous studies inliterature that are reporting superiority of vibration signal of bearing fault diagnosis.However, there are very few studies done using sound signal. The cost associated withcondition monitoring using sound signal (Microphone) is less than the cost of transducerused to acquire vibration signal (Accelerometer). This paper employs sound signal forcondition monitoring of roller bearing by K-star classifier and k-nearest neighborhoodclassifier. The statistical feature extraction is performed from acquired sound signals. Thentwo-layer feature selection is done using J48 decision tree algorithm and random treealgorithm. These selected features were classified using K-star classifier and k-nearestneighborhood classifier and parametric optimization is performed to achieve the maximumclassification accuracy. The classification results for both K-star classifier and k-nearestneighborhood classifier for condition monitoring of roller bearing using sound signals werecompared. 展开更多
关键词 K-star k-nearest neighborhood K-NN machine learning approach conditionmonitoring fault diagnosis roller bearing decision tree algorithm J-48 random treealgorithm decision making two-layer feature selection sound signal statistical features
在线阅读 下载PDF
Wireless Communication Signal Strength Prediction Method Based on the K-nearest Neighbor Algorithm
7
作者 Zhao Chen Ning Xiong +6 位作者 Yujue Wang Yong Ding Hengkui Xiang Chenjun Tang Lingang Liu Xiuqing Zou Decun Luo 《国际计算机前沿大会会议论文集》 2019年第1期238-240,共3页
Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically ... Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy. 展开更多
关键词 INTERFERENCE protection k-nearest NEIGHBOR algorithm NON-PARAMETRIC KERNEL regression SIGNAL field STRENGTH
在线阅读 下载PDF
Vehicle routing optimization algorithm based on time windows and dynamic demand
8
作者 LI Jun DUAN Yurong +1 位作者 ZHANG Weiwei ZHU Liyuan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期369-378,共10页
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,... To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem. 展开更多
关键词 vehicle routing problem dynamic demand genetic algorithm large-scale neighborhood search time windows
在线阅读 下载PDF
Attribute Reduction of Neighborhood Rough Set Based on Discernment
9
作者 Biqing Wang 《Journal of Electronic Research and Application》 2024年第1期80-85,共6页
For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm u... For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm. 展开更多
关键词 neighborhood rough set Attribute reduction DISCERNMENT algorithm
在线阅读 下载PDF
基于邻域搜索策略的蜣螂优化算法及应用 被引量:1
10
作者 杜晓昕 牛丽明 +3 位作者 王波 王一萍 李长荣 王振飞 《广西师范大学学报(自然科学版)》 北大核心 2025年第2期149-167,共19页
针对蜣螂优化算法存在收敛速度慢,容易陷入局部最优,且全局探索能力较弱等问题,受领导者-追随者策略(leader-follower)的启发,本文提出一种基于邻域搜索策略的蜣螂优化算法。首先,引入Singer映射初始化种群,提高初始解的质量,提高算法... 针对蜣螂优化算法存在收敛速度慢,容易陷入局部最优,且全局探索能力较弱等问题,受领导者-追随者策略(leader-follower)的启发,本文提出一种基于邻域搜索策略的蜣螂优化算法。首先,引入Singer映射初始化种群,提高初始解的质量,提高算法的收敛速度;其次,提出一种邻域搜索策略来增强种群多样性,跳出局部收敛,提高算法的局部开发能力;最后,设计一种精英池-扰动策略来扩大搜索范围,增强算法的全局勘探和局部寻优能力,提高算法的求解效率及求解精度。为了验证所提算法的有效性,本文设计一系列实验来验证所提算法的性能,结果表明,该算法在寻优精度和收敛速度方面有较大提升。将该算法应用于无人机三维路径规划问题,实验结果表明,该算法在处理实际应用问题时表现出了有效性和高效性。 展开更多
关键词 蜣螂优化算法 路径规划 Singer映射 邻域搜索策略 精英池-扰动策略
在线阅读 下载PDF
电动车-无人机协同配送模式下带时间窗的车辆路径优化问题 被引量:2
11
作者 张帅 刘思亮 张文宇 《中国管理科学》 北大核心 2025年第4期131-141,共11页
为进一步降低现有电动车物流配送体系的成本,在配送体系中引入无人机配送,针对电动车-无人机协同配送模式下带时间窗的车辆路径问题,构建了基于混合整数规划法的数学优化模型。在此基础上,提出了一种拓展型自适应大邻域搜索求解算法,设... 为进一步降低现有电动车物流配送体系的成本,在配送体系中引入无人机配送,针对电动车-无人机协同配送模式下带时间窗的车辆路径问题,构建了基于混合整数规划法的数学优化模型。在此基础上,提出了一种拓展型自适应大邻域搜索求解算法,设计了一种构造启发式算法以快速生成初始可行解,增加了充电站插入与移除规则,以使解满足电量约束,并设计了最短路移除算子以加快算法收敛。最后,通过不同规模的算例实验,验证了上述模型和算法的有效性,并通过敏感性实验分析了模型参数对配送成本的影响。 展开更多
关键词 时间窗 电动车-无人机 协同配送 路径优化问题 自适应大邻域搜索算法
原文传递
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
12
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square Method Robust Least Square Method Synthetic Data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization algorithm k-nearest Neighbor and Mean imputation
在线阅读 下载PDF
双邻域选择扩展A^(*)路径规划算法 被引量:1
13
作者 杨秀建 袁志豪 +1 位作者 白永瑞 敖鹏 《机械科学与技术》 北大核心 2025年第3期484-495,共12页
针对A^(*)算法在路径规划过程中存在的扩展节点过多、路径冗余点过多等问题,对经典A^(*)算法进行了改进研究。提出了斜八邻域扩展的概念,与四邻域扩展结合组成一种新的双邻域选择扩展策略,在路径搜索过程中可以有效减少扩展节点的数量... 针对A^(*)算法在路径规划过程中存在的扩展节点过多、路径冗余点过多等问题,对经典A^(*)算法进行了改进研究。提出了斜八邻域扩展的概念,与四邻域扩展结合组成一种新的双邻域选择扩展策略,在路径搜索过程中可以有效减少扩展节点的数量。为适应多种地图环境建立了新的启发函数,在相同地图环境下较经典A^(*)算法扩展的节点数量减少50%以上,路径搜索速度提高了一个数量级,算法效率明显提升。通过建立冗余点剔除策略与三次B样条曲线对初始路径进一步优化,剔除路径多余节点,减少路径转折,规划出一条符合机器人运动的最优路径。首先,在4种不同障碍物的地图环境下对改进后的A^(*)算法进行了仿真分析,并与Dijkstra、四邻域A^(*)算法、八邻域A^(*)算法进行了比较;然后,基于实验室的智能车试验平台进行了场地试验,对改进后的A^(*)算法进行了试验验证。结果表明:改进后A^(*)算法的路径搜索效率大幅提高,路径更有利于机器人运动,所提出的A^(*)改进算法是可行的、有效的。 展开更多
关键词 移动机器人 路径规划 A^(*)算法 邻域扩展 启发函数 冗余点剔除
在线阅读 下载PDF
带有充电约束的多AGV柔性作业车间调度 被引量:1
14
作者 李晓辉 资湖海 +3 位作者 徐坷鑫 牛樱清 赵毅 董媛 《计算机工程》 北大核心 2025年第4期314-326,共13页
在制造单元不再唯一且加工时间不确定的柔性作业车间调度中,多自动导向小车(AGV)发挥着重要作用。然而当AGV执行任务时间过长、消耗电量较多时,充电事件成为必须考虑的因素。该研究旨在解决考虑电池约束条件下的多AGV的柔性车间作业调... 在制造单元不再唯一且加工时间不确定的柔性作业车间调度中,多自动导向小车(AGV)发挥着重要作用。然而当AGV执行任务时间过长、消耗电量较多时,充电事件成为必须考虑的因素。该研究旨在解决考虑电池约束条件下的多AGV的柔性车间作业调度问题。综合考虑制造单元加工时间、AGV小车搬运时间以及AGV小车充电情况等约束条件,以优化最大完工时间为目标。针对此问题建立数学模型,将文化基因算法和自适应变邻域搜索算法相结合提出一种混合文化基因算法。该算法采用文化基因算法作为框架,并引入基于析取图的关键路径方法,以解决制造单元和AGV小车滞空率高的问题。同时,为了提高算法的寻优能力,避免陷入局部最优解,利用自适应变邻域搜索对当前迭代中的最优解进行改进。针对模型特点,设计多种打破重组的邻域结构,以实现算法求解最优值的目标。仿真实验结果表明,该算法具有寻找最优解的能力且整体性能优于所对比的算法,验证了该算法的有效性。 展开更多
关键词 柔性作业车间调度 自动导向小车 充电 基因算法 自适应变邻域搜索算法
在线阅读 下载PDF
基于障碍密度优先策略改进A^(*)算法的AGV路径规划 被引量:1
15
作者 陈一馨 段宇轩 +2 位作者 刘豪 谭世界 郑天乐 《郑州大学学报(工学版)》 北大核心 2025年第2期26-34,共9页
针对传统A^(*)算法在障碍物较多的实际场景下进行AGV路径规划时,存在路径拐点多、路径冗余节点过多以及易陷入局部最优解等问题,提出一种改进A^(*)算法,采用栅格法进行环境建模。首先,在启发函数中引入障碍物密度函数K(n)改进代价函数,... 针对传统A^(*)算法在障碍物较多的实际场景下进行AGV路径规划时,存在路径拐点多、路径冗余节点过多以及易陷入局部最优解等问题,提出一种改进A^(*)算法,采用栅格法进行环境建模。首先,在启发函数中引入障碍物密度函数K(n)改进代价函数,用于更准确地估计当前节点到目标节点的实际代价;其次,采用动态邻域搜索策略提高算法的搜索效率和运行效率;最后,通过冗余节点处理策略减少路径拐点和删除冗余节点,得到只包含起点、转折点以及终点的路径。采用不同尺寸和复杂度的栅格环境地图进行仿真实验,结果表明:所提改进A^(*)算法与传统A^(*)算法以及其他改进的A^(*)算法相比,路径长度分别缩短了4.71%和2.07%,路径拐点数量分别减少了45.45%和20.54%,路径存在节点分别减少了82.24%和62.45%。 展开更多
关键词 路径规划 栅格地图 改进A^(*)算法 启发函数 动态邻域搜索 冗余节点优化
在线阅读 下载PDF
基于AMR的货到人拣选系统的订单分配与排序优化问题研究 被引量:1
16
作者 刘志硕 张思睿 郝梦君 《北京交通大学学报》 北大核心 2025年第4期132-141,共10页
针对基于自主移动机器人(Autonomous Mobile Robot,AMR)的货到人拣选系统多拣货台场景,研究订单分配、处理顺序及货架访问顺序的集成优化,提出多拣货台订单分配与排序问题(Order Allocation and Sequencing Problem,OASP),对订单如何分... 针对基于自主移动机器人(Autonomous Mobile Robot,AMR)的货到人拣选系统多拣货台场景,研究订单分配、处理顺序及货架访问顺序的集成优化,提出多拣货台订单分配与排序问题(Order Allocation and Sequencing Problem,OASP),对订单如何分配给拣货台、订单在拣货台的处理顺序及如何安排货架的访问顺序进行集成优化决策,并以最小化订单拣选时间为目标建立混合整数规划模型.设计变邻域搜索算法(the Variable Neighborhood Search Algorithm,VNSA),通过订单相似度进行分批分配并生成贪婪初始解,结合货架置换、订单重分配的抖动算子和订单交换/插入、货架序列调整等4种局部优化邻域,采用动态切换机制实现迭代寻优,并将设计的算法与CPLEX求解器进行比较.研究结果表明:VNSA算法在小规模算例中求解速度与精度优于CPLEX求解器;在大规模算例中对初始解的优化能力显著,验证了联合优化订单分配和排序的有效性;订单拣选时间与拣货台数量、容量呈负相关,与负载平衡系数呈正相关. 展开更多
关键词 自主移动机器人 货到人订单拣选系统 订单分配 订单排序 货架排序 变邻域搜索算法
在线阅读 下载PDF
基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法
17
作者 徐辉 张顺香 《传感技术学报》 北大核心 2025年第9期1698-1703,共6页
无线传感网络环境中的障碍物、干扰信号等阻碍或干扰了信号传输,造成节点间通信质量下降,导致数据包丢失。为此,提出基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法。通过DV-Hop算法初步定位丢包节点并分析定位误差;利用粒子群... 无线传感网络环境中的障碍物、干扰信号等阻碍或干扰了信号传输,造成节点间通信质量下降,导致数据包丢失。为此,提出基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法。通过DV-Hop算法初步定位丢包节点并分析定位误差;利用粒子群算法将定位误差最小问题转化为粒子的全局寻优问题,得到的最优粒子位置即为丢包节点位置;基于邻域搜索策略缩小粒子搜索空间,提高粒子群算法全局寻优能力,实现无线传感网络丢包节点定位。仿真结果表明,该方法的丢包节点定位误报率平均值为0.45%,15个丢包节点的定位中仅有1个节点的定位结果与真实坐标存在较小偏差,邻域搜索策略应用后在第20次迭代后适应度函数值迅速降低至0.2,保证了无线传感网络通信质量。 展开更多
关键词 无线传感网络 丢包节点定位 邻域搜索 粒子群算法 DV-HOP算法
在线阅读 下载PDF
基于邻域点集稠密度的古陶瓷碎片轮廓线提取算法
18
作者 王莹 刘鹏欢 +4 位作者 陈雅鑫 王旭粲 李巍 周强 罗宏杰 《西北大学学报(自然科学版)》 北大核心 2025年第1期118-128,共11页
古陶瓷碎片轮廓线特征作为文物数字化修复的主要依据之一,能够直接影响文物原真性复原的质量和效率。针对古陶瓷碎片胎体较薄、形状不规则且点云数据量大而导致轮廓线提取的精度低、耗时长等问题,提出了一种基于邻域点集稠密度的古陶瓷... 古陶瓷碎片轮廓线特征作为文物数字化修复的主要依据之一,能够直接影响文物原真性复原的质量和效率。针对古陶瓷碎片胎体较薄、形状不规则且点云数据量大而导致轮廓线提取的精度低、耗时长等问题,提出了一种基于邻域点集稠密度的古陶瓷碎片轮廓线提取算法。首先,采用有向包围盒(OBB)中心平面平行切平面方式,将碎片进行切片处理,实现对点云的分层处理和数据简化;其次,根据轮廓点和非轮廓点处邻域点集稠密度不同这个规律,将邻域点集稠密度特征与随机采样一致性(RANSAC)算法相结合,实现对碎片轮廓线的精确和快速提取;最后,构造空间分类平面,并依据空间位置的约束关系,实现对碎片断裂面和非断裂面轮廓线的分类。实验结果表明,在百万级数据规模的古陶瓷碎片轮廓线提取方面,算法运行时间可控制在15~25 s,并且轮廓线提取的准确性可达78.3%,具有较高的准确性和完整性,能够为古陶瓷文物数字化修复提供技术依据。 展开更多
关键词 古陶瓷碎片轮廓线 点云切片 邻域点集稠密度 随机采样一致性算法
在线阅读 下载PDF
像素级可见光/红外图像融合方法设计
19
作者 翟书娟 刘磊 索艳滨 《激光与红外》 北大核心 2025年第8期1298-1304,共7页
像素级可见光/红外图像在成像过程中,低频子带系数和高频子带系数的能量分布在不同图像区域存在差异,对于可见光和红外图像融合而言,两者子带能量分布的差异更为复杂,这种能量分布的不均匀性使得当前的简单加权融合方法在匹配过程出现... 像素级可见光/红外图像在成像过程中,低频子带系数和高频子带系数的能量分布在不同图像区域存在差异,对于可见光和红外图像融合而言,两者子带能量分布的差异更为复杂,这种能量分布的不均匀性使得当前的简单加权融合方法在匹配过程出现一对多干扰,难以达到理想的融合效果,提出一种针对像素级可见光/红外图像的融合方法。将FAST特征点检测算法与ORB算法结合展开红外图像和可见光图像特征点检测,利用FLANN算法对提取出的特征点进行匹配,初步建立红外图像和可见光图像之间的对应关系,再通过RANSAC算法剔除误匹配的特征点对,解决单向匹配中存在的一对多匹配问题。基于图像配准结果,通过像素特征能量加权融合规则融合配准后图像的低频子带系数,基于邻域方差特征信息融合配准后图像的高频子带系数,组合低频子带系数和高频子带系数,生成最终的可见光红外融合图像。实验结果表明,所提方法确保了特征点匹配的双向一致性,解决了单向匹配中存在的一对多匹配问题,并且保留了图像细节,提升了信息丰富度,图像融合效果表现优异。 展开更多
关键词 图像融合 图像配准 ORB算法 低频高频子带系数 邻域方差
在线阅读 下载PDF
改进遗传算法求解装配式预制构件双资源调度问题 被引量:1
20
作者 唐艺军 谢志坤 《工程管理学报》 2025年第4期145-151,共7页
针对装配式建筑预制构件生产中机器和工人双重约束下的柔性作业调度问题(DRC-FJSP),采用一种基于块结构邻域搜索的改进遗传算法(GA-BSNS),通过工序导向的编解码方式,构建基于加工时序优化的调度模型。并结合精英个体保存策略、二元锦标... 针对装配式建筑预制构件生产中机器和工人双重约束下的柔性作业调度问题(DRC-FJSP),采用一种基于块结构邻域搜索的改进遗传算法(GA-BSNS),通过工序导向的编解码方式,构建基于加工时序优化的调度模型。并结合精英个体保存策略、二元锦标赛选择、改进的基于工序的交叉操作及互换变异与逆转变异等遗传操作,增强了算法的搜索能力和准确性。通过仿真实验,结果表明GA-BSNS算法在求解装配式建筑预制构件DRC-FJSP问题时,相比传统遗传算法,能够显著提高搜索效率和求解质量,实现预制构件生产资源的优化配置,为装配式建筑工业化生产提供数据驱动的决策支持。 展开更多
关键词 装配式建筑预制构件 柔性作业调度 双资源约束 遗传算法 块结构邻域搜索
在线阅读 下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部