期刊文献+
共找到273篇文章
< 1 2 14 >
每页显示 20 50 100
Efficient Parallel Processing of k-Nearest Neighbor Queries by Using a Centroid-based and Hierarchical Clustering Algorithm
1
作者 Elaheh Gavagsaz 《Artificial Intelligence Advances》 2022年第1期26-41,共16页
The k-Nearest Neighbor method is one of the most popular techniques for both classification and regression purposes.Because of its operation,the application of this classification may be limited to problems with a cer... The k-Nearest Neighbor method is one of the most popular techniques for both classification and regression purposes.Because of its operation,the application of this classification may be limited to problems with a certain number of instances,particularly,when run time is a consideration.However,the classification of large amounts of data has become a fundamental task in many real-world applications.It is logical to scale the k-Nearest Neighbor method to large scale datasets.This paper proposes a new k-Nearest Neighbor classification method(KNN-CCL)which uses a parallel centroid-based and hierarchical clustering algorithm to separate the sample of training dataset into multiple parts.The introduced clustering algorithm uses four stages of successive refinements and generates high quality clusters.The k-Nearest Neighbor approach subsequently makes use of them to predict the test datasets.Finally,sets of experiments are conducted on the UCI datasets.The experimental results confirm that the proposed k-Nearest Neighbor classification method performs well with regard to classification accuracy and performance. 展开更多
关键词 CLASSIFICATION k-nearest neighbor Big data clustering Parallel processing
在线阅读 下载PDF
Real-Time Spreading Thickness Monitoring of High-core Rockfill Dam Based on K-nearest Neighbor Algorithm 被引量:4
2
作者 Denghua Zhong Rongxiang Du +2 位作者 Bo Cui Binping Wu Tao Guan 《Transactions of Tianjin University》 EI CAS 2018年第3期282-289,共8页
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and... During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface. 展开更多
关键词 Core rockfill dam Dam storehouse surface construction Spreading thickness k-nearest neighbor algorithm Real-time monitor
在线阅读 下载PDF
A KNN-based two-step fuzzy clustering weighted algorithm for WLAN indoor positioning 被引量:3
3
作者 Xu Yubin Sun Yongliang Ma Lin 《High Technology Letters》 EI CAS 2011年第3期223-229,共7页
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i... Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM. 展开更多
关键词 wireless local area networks (WLAN) indoor positioning k-nearest neighbors (KNN) fuzzy c-means (FCM) clustering center
在线阅读 下载PDF
Density Clustering Algorithm Based on KD-Tree and Voting Rules 被引量:1
4
作者 Hui Du Zhiyuan Hu +1 位作者 Depeng Lu Jingrui Liu 《Computers, Materials & Continua》 SCIE EI 2024年第5期3239-3259,共21页
Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional... Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy. 展开更多
关键词 Density peaks clustering KD-TREE k-nearest neighbors voting rules
在线阅读 下载PDF
Wireless Communication Signal Strength Prediction Method Based on the K-nearest Neighbor Algorithm
5
作者 Zhao Chen Ning Xiong +6 位作者 Yujue Wang Yong Ding Hengkui Xiang Chenjun Tang Lingang Liu Xiuqing Zou Decun Luo 《国际计算机前沿大会会议论文集》 2019年第1期238-240,共3页
Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically ... Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy. 展开更多
关键词 INTERFERENCE protection k-nearest neighbor algorithm NON-PARAMETRIC KERNEL regression SIGNAL field STRENGTH
在线阅读 下载PDF
Contrastive Clustering for Unsupervised Recognition of Interference Signals
6
作者 Xiangwei Chen Zhijin Zhao +3 位作者 Xueyi Ye Shilian Zheng Caiyi Lou Xiaoniu Yang 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1385-1400,共16页
Interference signals recognition plays an important role in anti-jamming communication.With the development of deep learning,many supervised interference signals recognition algorithms based on deep learning have emer... Interference signals recognition plays an important role in anti-jamming communication.With the development of deep learning,many supervised interference signals recognition algorithms based on deep learning have emerged recently and show better performance than traditional recognition algorithms.However,there is no unsupervised interference signals recognition algorithm at present.In this paper,an unsupervised interference signals recognition method called double phases and double dimensions contrastive clustering(DDCC)is proposed.Specifically,in the first phase,four data augmentation strategies for interference signals are used in data-augmentation-based(DA-based)contrastive learning.In the second phase,the original dataset’s k-nearest neighbor set(KNNset)is designed in double dimensions contrastive learning.In addition,a dynamic entropy parameter strategy is proposed.The simulation experiments of 9 types of interference signals show that random cropping is the best one of the four data augmentation strategies;the feature dimensional contrastive learning in the second phase can improve the clustering purity;the dynamic entropy parameter strategy can improve the stability of DDCC effectively.The unsupervised interference signals recognition results of DDCC and five other deep clustering algorithms show that the clustering performance of DDCC is superior to other algorithms.In particular,the clustering purity of our method is above 92%,SCAN’s is 81%,and the other three methods’are below 71%when jammingnoise-ratio(JNR)is−5 dB.In addition,our method is close to the supervised learning algorithm. 展开更多
关键词 Interference signals recognition unsupervised clustering contrastive learning deep learning k-nearest neighbor
在线阅读 下载PDF
一种改进的ZigBee网络Cluster-Tree路由算法 被引量:15
7
作者 李刚 陈俊杰 葛文涛 《测控技术》 CSCD 北大核心 2009年第9期52-55,共4页
针对ZigBee网络Cluster-Tree算法只按父子关系选择路由可能会带来额外路由开销的问题,提出一种改进的Cluster-Tree路由算法。首先介绍ZigBee网络的地址分配机制,分析Cluster-Tree路由算法,并在此基础上引入邻居表提出改进算法。该算法... 针对ZigBee网络Cluster-Tree算法只按父子关系选择路由可能会带来额外路由开销的问题,提出一种改进的Cluster-Tree路由算法。首先介绍ZigBee网络的地址分配机制,分析Cluster-Tree路由算法,并在此基础上引入邻居表提出改进算法。该算法的基本思想:如果选择邻居节点的路由开销与原算法相比更小,则会选择邻居节点作为下一跳。仿真结果表明,该算法可以减少约30%的路由开销。 展开更多
关键词 ZIGBEE网络 cluster—Tree算法 邻居表 路由开销
在线阅读 下载PDF
ZigBee中改进的Cluster-Tree路由算法 被引量:10
8
作者 谢川 《计算机工程》 CAS CSCD 北大核心 2011年第7期115-117,共3页
针对ZigBee网络的Cluster-Tree算法对簇首能量要求高、选择的路由非最佳路由等问题,结合节点能量分析和节点邻居表,提出一种改进的簇首生成方法,利用AODVjr算法为节点选择最佳路由。仿真结果证明,与原Cluster-Tree算法相比,改进的算法... 针对ZigBee网络的Cluster-Tree算法对簇首能量要求高、选择的路由非最佳路由等问题,结合节点能量分析和节点邻居表,提出一种改进的簇首生成方法,利用AODVjr算法为节点选择最佳路由。仿真结果证明,与原Cluster-Tree算法相比,改进的算法能有效提高数据发送成功率,减少源节点与目标节点间的跳数,降低端到端的报文传输时延,提高网络的使用价值。 展开更多
关键词 ZIGBEE网络 路由算法 cluster-Tree算法 AODVjr算法 邻居表
在线阅读 下载PDF
基于ZigBee无线网络的Cluster-Tree路由算法研究 被引量:6
9
作者 赵博 吴静 《电子技术应用》 北大核心 2016年第4期116-119,123,共5页
针对ZigBee无线网络中Cluster-Tree算法只依靠父子关系路由且ZigBee技术传输带宽的限制,致使网络中负载较重的链路不能及时传递信息,而造成网络拥塞、丢包和较低的吞吐量问题,提出了一种改进算法Z-DMHCTR。该算法针对负载超过一定限度... 针对ZigBee无线网络中Cluster-Tree算法只依靠父子关系路由且ZigBee技术传输带宽的限制,致使网络中负载较重的链路不能及时传递信息,而造成网络拥塞、丢包和较低的吞吐量问题,提出了一种改进算法Z-DMHCTR。该算法针对负载超过一定限度的节点,除了按照原等级树算法路由之外,结合引入的邻居列表信息,寻找节点不与原路径相交的路径同时进行信息传输,从而提高网络带宽利用率,达到提升网络的吞吐量的目的。仿真实验主要从网络吞吐量、端到端数据传输延时等方面入手进行对比。结果表明,改进算法能够有效地提高网络吞吐量,并降低了传输数据的延时。 展开更多
关键词 ZIGBEE网络 cluster-Tree算法 Z-DMHCTR算法 邻居列表
在线阅读 下载PDF
ZigBee网络Cluster-Tree优化路由算法研究 被引量:5
10
作者 曹越 胡方明 党妮 《单片机与嵌入式系统应用》 2012年第10期4-7,共4页
通过分析ZigBee协议中Cluster-Tree和AODVjr算法的优缺点,提出一种基于Cluster-Tree+AODVjr的优化路由算法。该算法利用ZigBee协议中的邻居表,通过定义分区来确定目的节点的范围,从而控制广播RREQ分组的跳数,防止无效的RREQ泛洪。此优... 通过分析ZigBee协议中Cluster-Tree和AODVjr算法的优缺点,提出一种基于Cluster-Tree+AODVjr的优化路由算法。该算法利用ZigBee协议中的邻居表,通过定义分区来确定目的节点的范围,从而控制广播RREQ分组的跳数,防止无效的RREQ泛洪。此优化算法能够有效地减小路由跳数,缩短传输时延,减少网络中死亡节点的数量,提高数据传送的成功率。 展开更多
关键词 ZigBee 路由算法 cluster—Tree+AODVjr 邻居表 分组
在线阅读 下载PDF
A Memetic Algorithm With Competition for the Capacitated Green Vehicle Routing Problem 被引量:9
11
作者 Ling Wang Jiawen Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期516-526,共11页
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t... In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP. 展开更多
关键词 Capacitated green VEHICLE ROUTING problem(CGVRP) COMPETITION k-nearest neighbor(kNN) local INTENSIFICATION memetic algorithm
在线阅读 下载PDF
An Improved Whale Optimization Algorithm for Feature Selection 被引量:4
12
作者 Wenyan Guo Ting Liu +1 位作者 Fang Dai Peng Xu 《Computers, Materials & Continua》 SCIE EI 2020年第1期337-354,共18页
Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in term... Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space. 展开更多
关键词 Whale optimization algorithm Filter and Wrapper model k-nearest neighbor method Adaptive neighborhood hybrid mutation
在线阅读 下载PDF
Research on Initialization on EM Algorithm Based on Gaussian Mixture Model 被引量:4
13
作者 Ye Li Yiyan Chen 《Journal of Applied Mathematics and Physics》 2018年第1期11-17,共7页
The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effectiv... The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm. 展开更多
关键词 EM algorithm GAUSSIAN MIXTURE Model k-nearest neighbor K-MEANS algorithm INITIALIZATION
在线阅读 下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
14
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
在线阅读 下载PDF
An Optimization System for Intent Recognition Based on an Improved KNN Algorithm with Minimal Feature Set for Powered Knee Prosthesis
15
作者 Yao Zhang Xu Wang +6 位作者 Haohua Xiu Lei Ren Yang Han Yongxin Ma Wei Chen Guowu Wei Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2619-2632,共14页
In this article,a new optimization system that uses few features to recognize locomotion with high classification accuracy is proposed.The optimization system consists of three parts.First,the features of the mixed me... In this article,a new optimization system that uses few features to recognize locomotion with high classification accuracy is proposed.The optimization system consists of three parts.First,the features of the mixed mechanical signal data are extracted from each analysis window of 200 ms after each foot contact event.Then,the Binary version of the hybrid Gray Wolf Optimization and Particle Swarm Optimization(BGWOPSO)algorithm is used to select features.And,the selected features are optimized and assigned different weights by the Biogeography-Based Optimization(BBO)algorithm.Finally,an improved K-Nearest Neighbor(KNN)classifier is employed for intention recognition.This classifier has the advantages of high accuracy,few parameters as well as low memory burden.Based on data from eight patients with transfemoral amputations,the optimization system is evaluated.The numerical results indicate that the proposed model can recognize nine daily locomotion modes(i.e.,low-,mid-,and fast-speed level-ground walking,ramp ascent/decent,stair ascent/descent,and sit/stand)by only seven features,with an accuracy of 96.66%±0.68%.As for real-time prediction on a powered knee prosthesis,the shortest prediction time is only 9.8 ms.These promising results reveal the potential of intention recognition based on the proposed system for high-level control of the prosthetic knee. 展开更多
关键词 Intent recognition k-nearest neighbor algorithm Powered knee prosthesis Locomotion mode classification
在线阅读 下载PDF
基于ZigBee网络的Cluster-Tree能量优化算法
16
作者 李玉花 田志刚 《山西科技》 2014年第6期106-108,共3页
在ZigBee网络的Cluster-Tree算法中,簇首节点容易过早耗尽自身能量,减少网络的整体寿命。针对此问题,给出了更改簇首节点的方法,避免剩余能量低的簇首节点转发大数据,减少节点到协调器的跳数,提高网络的应用价值。
关键词 ZIGBEE网络 cluster-Tree算法 簇首节点 能量优化 剩余能量 邻居列表
在线阅读 下载PDF
基于K互近邻与核密度估计的DPC算法 被引量:2
17
作者 周玉 夏浩 +1 位作者 刘虹瑜 白磊 《北京航空航天大学学报》 北大核心 2025年第6期1978-1990,共13页
快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)... 快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)的DPC(KKDPC)算法。通过K近邻和核密度估计方法得到数据点的K互近邻数量和局部核密度;将K互近邻数量与局部核密度进行加和获得新的局部密度;根据数据点的局部密度得到相对距离,并通过构建决策图选取聚类中心及分配非中心点。利用人工数据集和真实数据集进行实验,并与DPC、基于密度的噪声空间聚类应用(DBSCAN)、K-means、模糊C均值聚类算法(FCM)、基于K近邻的DPC(DPCKNN)、近邻优化DPC(DPC-NNO)、基于模糊加权共享邻居的DPC(DPC-FWSN)算法进行对比。通过计算调整互信息(AMI)、调整兰德指数(ARI)、归一化互信息(NMI)来验证KKDPC算法的性能。实验结果表明:KKDPC算法能更加准确地识别聚类中心,有效地提高聚类精度。 展开更多
关键词 聚类算法 密度峰值 K近邻 K互近邻 核密度估计
原文传递
A two-stage framework for automated operational modal identification using OPTICS-KNN-based clustering
18
作者 Yi CHEN Wenwei FU +3 位作者 Yaozhi LUO Yanbin SHEN Hui YANG Shiying WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第11期1052-1069,共18页
Modal analysis,which provides modal parameters including frequencies,damping ratios,and mode shapes,is essential for assessing structural safety in structural health monitoring.Automated operational modal analysis(AOM... Modal analysis,which provides modal parameters including frequencies,damping ratios,and mode shapes,is essential for assessing structural safety in structural health monitoring.Automated operational modal analysis(AOMA)offers a promising alternative to traditional methods that depend heavily on human intervention and engineering judgment.However,estimating structural dynamic properties and managing spurious modes remain challenging due to uncertainties in practical application conditions.To address this issue,we propose an automated modal identification approach comprising three key aspects:(1)identification of modal parameters using covariance-driven stochastic subspace identification;(2)automated interpretation of the stabilization diagram;(3)an improved self-adaptive algorithm for grouping physical modes based on ordering points to identify the clustering structure(OPTICS)combined with k-nearest neighbors(KNN).The proposed approach can play a crucial role in enabling real-time structural health monitoring without human intervention.A simulated 10-story shear frame was used to verify the methodology.Identification results from a cable-stayed bridge demonstrate the practicality of the proposed method for conducting AOMA in engineering practice.The proposed approach can automatically identify modal parameters with high accuracy,making it suitable for a real-time structural health monitoring framework. 展开更多
关键词 Structural health monitoring Covariance-driven stochastic subspace identification Automated operational modal analysis(AOMA) Ordering points to identify the clustering structure(OPTICS) k-nearest neighbors(KNN)
原文传递
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
19
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square Method Robust Least Square Method Synthetic Data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization algorithm k-nearest neighbor and Mean imputation
在线阅读 下载PDF
KMDW和ISVDD方法在钻头磨损状态识别中的应用
20
作者 郝旺身 娄本池 +4 位作者 董辛旻 王林恒 朱春辉 陈世金 王亚坤 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期179-186,共8页
为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVD... 为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVDD模型进行故障分类,对混叠样本采用K近邻隶属度值进行识别,并采用改进的蝴蝶优化算法(IBOA)优化SVDD模型参数。在标准数据集上验证所提方法的优越性,结果表明:加入K近邻隶属度值可使F值和准确率分别提升6.36%和6.59%;KMDW相比K均值聚类方法的ARI值和NMI值分别提升10.01%和10.75%,能够达到更好的聚类效果;经蝴蝶优化算法改进后模型识别精度进一步提高。将所提方法应用于钻头磨损状态的识别,识别准确率达到92.83%,证明其具有较好的识别精度和通用性。 展开更多
关键词 SVDD K均值密度权重聚类 蝴蝶优化算法 K近邻算法 钻头磨损状态识别
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部