期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Diagnosis of Disc Space Variation Fault Degree of Transformer Winding Based on K-Nearest Neighbor Algorithm 被引量:1
1
作者 Song Wang Fei Xie +3 位作者 Fengye Yang Shengxuan Qiu Chuang Liu Tong Li 《Energy Engineering》 EI 2023年第10期2273-2285,共13页
Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose t... Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose the disc space variation(DSV)fault degree of transformer winding,this paper presents a diagnostic method of winding fault based on the K-Nearest Neighbor(KNN)algorithmand the frequency response analysis(FRA)method.First,a laboratory winding model is used,and DSV faults with four different degrees are achieved by changing disc space of the discs in the winding.Then,a series of FRA tests are conducted to obtain the FRA results and set up the FRA dataset.Second,ten different numerical indices are utilized to obtain features of FRA curves of faulted winding.Third,the 10-fold cross-validation method is employed to determine the optimal k-value of KNN.In addition,to improve the accuracy of the KNN model,a comparative analysis is made between the accuracy of the KNN algorithm and k-value under four distance functions.After getting the most appropriate distance metric and kvalue,the fault classificationmodel based on theKNN and FRA is constructed and it is used to classify the degrees of DSV faults.The identification accuracy rate of the proposed model is up to 98.30%.Finally,the performance of the model is presented by comparing with the support vector machine(SVM),SVM optimized by the particle swarmoptimization(PSO-SVM)method,and randomforest(RF).The results show that the diagnosis accuracy of the proposed model is the highest and the model can be used to accurately diagnose the DSV fault degrees of the winding. 展开更多
关键词 Transformer winding frequency response analysis(FRA)method k-nearest neighbor(KNN) disc space variation(DSV)
在线阅读 下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
2
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square method Robust Least Square method Synthetic Data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization Algorithm k-nearest neighbor and Mean imputation
在线阅读 下载PDF
基于自然单元法的极限下限分析
3
作者 王崴 赵丽 +2 位作者 李睿智 张怡 任红萍 《力学季刊》 北大核心 2025年第1期108-117,共10页
自然单元法是一种基于自然邻近插值的无网格方法,其形函数构造简单,且易于施加本质边界条件.基于极限分析理论和降维思想,建立了用自然单元法进行二维理想弹塑性结构极限下限分析的整套求解算法.极限下限分析中的弹性应力场由自然单元... 自然单元法是一种基于自然邻近插值的无网格方法,其形函数构造简单,且易于施加本质边界条件.基于极限分析理论和降维思想,建立了用自然单元法进行二维理想弹塑性结构极限下限分析的整套求解算法.极限下限分析中的弹性应力场由自然单元法直接求出,利用自然单元法弹塑性迭代的结果得到自平衡应力基矢量并构造出所需的自平衡应力场.极限下限问题被转化为一系列数学规划子问题,并采用复合形法直接求解.数值算例结果表明,将自然单元法应用于极限下限分析是可行有效的. 展开更多
关键词 自然单元法 自然邻近插值 极限分析 自平衡应力场 复合形法
原文传递
基于微震监测技术的深部金属矿大范围采动应力场反演方法
4
作者 孙玉福 常家晖 +3 位作者 崔松 刘建坡 王晓南 范彦迪 《矿业研究与开发》 北大核心 2025年第9期8-16,共9页
深部金属矿山大范围多中段、多采场强回采造成围岩应力场频繁剧烈调整,极易诱发片帮、冒落等工程岩体灾害。针对现有采动应力场反演过程中存在多点测试成本高、反演时效性差等问题,提出了基于微震震源半径动态优化邻域搜索范围的改进密... 深部金属矿山大范围多中段、多采场强回采造成围岩应力场频繁剧烈调整,极易诱发片帮、冒落等工程岩体灾害。针对现有采动应力场反演过程中存在多点测试成本高、反演时效性差等问题,提出了基于微震震源半径动态优化邻域搜索范围的改进密度聚类算法,将微震活动划分为多个内部关联性高的簇族。在此基础上,采用自然邻点插值方法,建立了“微震信号视应力—微震事件视应力—微震簇视应力—采动应力场”反演方法。深部金属矿工程实践表明,微震数据聚类簇族的平均轮廓系数为0.56,验证了该改进密度聚类算法对微震数据聚类的可靠性,且该方法获得的视应力集中区与实际地压灾害事件所在区域高度吻合。研究结果可为深部金属矿采动地压潜在危险区域识别和风险管控提供理论和技术支撑。 展开更多
关键词 深部金属矿 采动应力场反演 微震监测技术 密度聚类算法 自然邻点插值方法
原文传递
Precipitation Retrieval from Himawari-8 Satellite Infrared Data Based on Dictionary Learning Method and Regular Term Constraint 被引量:2
5
作者 Wang Gen Ding Conghui Liu Huilan 《Meteorological and Environmental Research》 CAS 2019年第3期61-65,68,共6页
In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness tempera... In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness temperature data,corresponding "precipitation field dictionary" and "channel brightness temperature dictionary" are formed.The retrieval of precipitation field based on brightness temperature data is studied through the classification rule of k-nearest neighbor domain (KNN) and regularization constraint.Firstly,the corresponding "dictionary" is constructed according to the training sample database of the matched GPM precipitation data and H8 brightness temperature data.Secondly,according to the fact that precipitation characteristics in small organizations in different storm environments are often repeated,KNN is used to identify the spectral brightness temperature signal of "precipitation" and "non-precipitation" based on "the dictionary".Finally,the precipitation field retrieval is carried out in the precipitation signal "subspace" based on the regular term constraint method.In the process of retrieval,the contribution rate of brightness temperature retrieval of different channels was determined by Bayesian model averaging (BMA) model.The preliminary experimental results based on the "quantitative" evaluation indexes show that the precipitation of H8 retrieval has a good correlation with the GPM truth value,with a small error and similar structure. 展开更多
关键词 Himawari-8(H8) RETRIEVAL of PRECIPITATION k-nearest neighbor (KNN) REGULAR TERM constraints DICTIONARY method Bayesian model average (BMA)
在线阅读 下载PDF
A new progressive open-set recognition method with adaptive probability threshold 被引量:1
6
作者 Zhunga LIU Xuemeng HUI Yimin FU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第11期297-310,共14页
In the traditional pattern classification method,it usually assumes that the object to be classified must lie in one of given(known)classes of the training data set.However,the training data set may not contain the cl... In the traditional pattern classification method,it usually assumes that the object to be classified must lie in one of given(known)classes of the training data set.However,the training data set may not contain the class of some objects in practice,and this is considered as an Open-Set Recognition(OSR)problem.In this paper,we propose a new progressive open-set recognition method with adaptive probability threshold.Both the labeled training data and the test data(objects to be classified)are put into a common data set,and the k-Nearest Neighbors(k-NNs)of each object are sought in this common set.Then,we can determine the probability of object lying in the given classes.If the majority of k-NNs of the object are from labeled training data,this object quite likely belongs to one of the given classes,and the density of the object and its neighbors is taken into account here.However,when most of k-NNs are from the unlabeled test data set,the class of object is considered very uncertain because the class of test data is unknown,and this object cannot be classified in this step.Once the objects belonging to known classes with high probability are all found,we re-calculate the probability of the other uncertain objects belonging to known classes based on the labeled training data and the objects marked with the estimated probability.Such iteration will stop when the probabilities of all the objects belonging to known classes are not changed.Then,a modified Otsu’s method is employed to adaptively seek the probability threshold for the final classification.If the probability of object belonging to known classes is smaller than this threshold,it will be assigned to the ignorant(unknown)class that is not included in training data set.The other objects will be committed to a specific class.The effectiveness of the proposed method has been validated using some experiments. 展开更多
关键词 Data mining k-nearest neighbors Open-set recognition Object recognition The Otsu’s method
原文传递
A two-stage short-term traffic flow prediction method based on AVL and AKNN techniques 被引量:1
7
作者 孟梦 邵春福 +2 位作者 黃育兆 王博彬 李慧轩 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期779-786,共8页
Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanc... Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations. 展开更多
关键词 engineering of communication and transportation system short-term traffic flow prediction advanced k-nearest neighbor method pattern recognition balanced binary tree technique
在线阅读 下载PDF
k-NN METHOD IN PARTIAL LINEAR MODEL UNDER RANDOM CENSORSHIP 被引量:1
8
作者 QIN GENGSHENG (Department of Mathematics,Sichuan University, Chengdu 610064). 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1995年第3期275-286,共12页
Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the est... Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3). 展开更多
关键词 Partial linear model censored data class K method k-nearest neighbor weights
在线阅读 下载PDF
数据驱动的出口管熔模铸件夹杂预测与工艺优化
9
作者 李天佑 王玉 +4 位作者 计效园 余朋 常玎凯 殷亚军 周建新 《特种铸造及有色合金》 CAS 北大核心 2024年第11期1441-1446,共6页
提出了基于BP神经网络与改进粒子群算法的夹杂预测与工艺优化方法。首先,基于华铸ERP系统进行数据挖掘及清洗;其次,建立结合粒子群算法与BP神经网络的缺陷预测模型(Particle Swarm Optimization-Back Propagation,PSO-BP),相比普通BP神... 提出了基于BP神经网络与改进粒子群算法的夹杂预测与工艺优化方法。首先,基于华铸ERP系统进行数据挖掘及清洗;其次,建立结合粒子群算法与BP神经网络的缺陷预测模型(Particle Swarm Optimization-Back Propagation,PSO-BP),相比普通BP神经网络,精度由92.1%提升至94.7%;最后,提出结合K近邻插补法与改进粒子群算法的工艺优化方法(K-Nearest Neighbors Imputation-Improved Particle Swarm Optimization,KNN-IPSO)。经模拟验证,相比生产前工艺在不同扰动下优化算法的缺陷率分别降低了52%和40%。 展开更多
关键词 熔模铸件 BP神经网络 改进粒子群算法 K近邻插补法
原文传递
Evaluation of the k-nearest neighbor method for forecasting the influent characteristics of wastewater treatment plant 被引量:6
10
作者 Minsoo KIM Yejin KIM +2 位作者 Hyosoo KIM Wenhua PIAO Changwon KIM 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第2期299-310,共12页
The k-nearest neighbor (k-NN) method was evaluated to predict the influent flow rate and four water qualities, namely chemical oxygen demand (COD), suspended solid (SS), total nitrogen (T-N) and total phosphor... The k-nearest neighbor (k-NN) method was evaluated to predict the influent flow rate and four water qualities, namely chemical oxygen demand (COD), suspended solid (SS), total nitrogen (T-N) and total phosphorus (T-P) at a wastewater treatment plant (WWTP). The search range and approach for determining the number of nearest neighbors (NNs) under dry and wet weather conditions were initially optimized based on the root mean square error (RMSE). The optimum search range for considering data size was one year. The square root-based (SR) approach was superior to the distance factor-based (DF) approach in determining the appropriate number of NNs. However, the results for both approaches varied slightly depending on the water quality and the weather conditions. The influent flow rate was accurately predicted within one standard deviation of measured values. Influent water qualities were well predicted with the mean absolute percentage error (MAPE) under both wet and dry weather conditions. For the seven-day prediction, the difference in predictive accuracy was less than 5% in dry weather conditions and slightly worse in wet weather conditions. Overall, the k-NN method was verified to be useful for predicting WWTP influent characteristics. 展开更多
关键词 influent wastewater prediction data-drivenmodel k-nearest neighbor method (k-NN)
原文传递
海洋盐度分布的插值方法应用与对比研究 被引量:12
11
作者 王兴 刘莹 +2 位作者 王春晖 李保磊 钟山 《海洋通报》 CAS CSCD 北大核心 2016年第3期324-330,共7页
空间插值在海洋环境评价中有着广泛的应用,常用的插值方法有:线性插值、最近邻点插值、自然邻点插值、三次多项式插值、反距离权重插值、克里金插值等。盐度是海水重要的环境因子,基于2012年8月份的北海区盐度监测数据,采用空间插值分... 空间插值在海洋环境评价中有着广泛的应用,常用的插值方法有:线性插值、最近邻点插值、自然邻点插值、三次多项式插值、反距离权重插值、克里金插值等。盐度是海水重要的环境因子,基于2012年8月份的北海区盐度监测数据,采用空间插值分析表层盐度分布,并通过开展不同插值方法的插值实验,对插值结果进行曲面分析和误差分析,对比各插值方法的特点与适用性。结果显示:基于本次海洋环境监测的站位与盐度数据,克里金插值、自然邻点插值曲面趋势符合较好,而且相对其他插值方法误差也较小,是相对适用于海水盐度的空间插值方法。 展开更多
关键词 盐度 插值方法 误差分析 克里金 自然邻点
在线阅读 下载PDF
应用自然邻接点插值法的块体非连续变形分析 被引量:14
12
作者 马永政 郑宏 李春光 《岩土力学》 EI CAS CSCD 北大核心 2008年第1期119-124,共6页
传统的非连续变形分析法(DDA)采用线性位移模式存在诸多缺陷。为准确计算块体应力场,传统上一般直接增加位移函数的多项式阶次,或进行子块体划分或耦合有限元等改进措施,但应用上仍不够方便有效。建议引进无网格节点位移插值模式,采用... 传统的非连续变形分析法(DDA)采用线性位移模式存在诸多缺陷。为准确计算块体应力场,传统上一般直接增加位移函数的多项式阶次,或进行子块体划分或耦合有限元等改进措施,但应用上仍不够方便有效。建议引进无网格节点位移插值模式,采用自然单元法中的自然邻接点插值(NNI)法,具有插值特性,易于准确实施边界条件或材料连续性条件,且具有无网格特征和良好的计算精度,计算更快效。可在此基础上进一步分析大块体弯曲、裂纹扩展破坏形式等,以解决线性位移模式等的不足。 展开更多
关键词 DDA 线性位移模式 自然单元法 自然邻接点插值
在线阅读 下载PDF
基于局部自然邻近无网格法的形状优化 被引量:6
13
作者 王凯 周慎杰 +1 位作者 聂志峰 孔胜利 《机械工程学报》 EI CAS CSCD 北大核心 2009年第10期185-191,共7页
把自然邻近无网格法中控制方程的局部积分'弱'形式应用于连续型物质导数法灵敏度分析中,使用直接微分法导出了基于局部子域积分方程的连续型灵敏度分析公式,采用自然邻近无网格法对其离散求解,以获得各结点处的灵敏度信息。使... 把自然邻近无网格法中控制方程的局部积分'弱'形式应用于连续型物质导数法灵敏度分析中,使用直接微分法导出了基于局部子域积分方程的连续型灵敏度分析公式,采用自然邻近无网格法对其离散求解,以获得各结点处的灵敏度信息。使用该灵敏度分析方法,把自然邻近无网格法与非线性规划理论相结合,采用约束变尺度序列二次规划法,构建了一种形状优化方法。算例表明,该灵敏度计算方法只使用离散结点信息,计算精度高,无需额外的背景积分网格,优化过程不需要网格重构,具有较高的收敛速度,使用较少的设计变量就可以获得良好的优化效果。 展开更多
关键词 形状优化 灵敏度分析 无网格法 自然邻近插值
在线阅读 下载PDF
自然单元法研究进展 被引量:23
14
作者 王兆清 冯伟 《力学进展》 EI CSCD 北大核心 2004年第4期437-445,共9页
自然单元法是一种基于Voronoi图和Delaunay三角化几何结构,以自然邻点插值为试函数的一种新型数值方法.其既具有无网格方法和经典有限元方法的优点,又克服了两者的一些缺陷,是一种发展前景广阔的求解微分方程的数值方法.自然单元法的形... 自然单元法是一种基于Voronoi图和Delaunay三角化几何结构,以自然邻点插值为试函数的一种新型数值方法.其既具有无网格方法和经典有限元方法的优点,又克服了两者的一些缺陷,是一种发展前景广阔的求解微分方程的数值方法.自然单元法的形函数满足插值性质,可以像有限元法一样直接施加本质边界条件,不存在基于移动最小二乘拟合的无网格方法不能直接施加本质边界条件的难题.由于自然单元法是无网格方法,可以方便处理有限元方法较难处理的一些问题,例如移动边界和大变形等问题.自然单元法与其他数值方法的最根本区别于其插值格式的不同.将自然邻点插值用于Galerkin过程,就得到基于Voronoi结构的自然单元Galerkin法.自然邻点插值有自然邻点Sibson插值和Laplace插值(非Sibson插值)两种.Laplace插值比Sibson插值在计算上要简单的多,并且不论对凸的或非凸的区域都能精确施加本质边界条件.以Laplace插值为试函数的自然单元法在数值实施上比以Sibson插值为试函数的自然单元法简单.本文对基于Voronoi结构的自然邻点插值和自然单元法的基本思想作了介绍,综述了国内外关于自然单元法的研究成果,总结了自然单元法的优点和尚需解决的问题. 展开更多
关键词 自然单元法 无网格方法 边界条件 试函数 数值方法 形函数 GALERKIN法 有限元方法 大变形 有限元法
在线阅读 下载PDF
卫星遥感融合中通量守恒重采样方法与其它常用方法的比较 被引量:4
15
作者 田林 张亭禄 +1 位作者 陈树果 王晓菲 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期103-108,共6页
对多卫星传感器数据进行融合,首先要将多个传感器数据通过重采样算法重新投影到标准网格上。本文运用一种基于多边形切割算法的通量守恒重采样算法对图像数据进行重采样,并将该算法与3种常用的重采样算法(最邻近插值法、双线性插值法、... 对多卫星传感器数据进行融合,首先要将多个传感器数据通过重采样算法重新投影到标准网格上。本文运用一种基于多边形切割算法的通量守恒重采样算法对图像数据进行重采样,并将该算法与3种常用的重采样算法(最邻近插值法、双线性插值法、三次卷积插值法)在信息保真方面的性能进行了比较。将所比较的重采样方法应用于两幅具有代表性的图像,其中一幅为人造图像,用于定性比较各种采样方法在图像缩放中的采样精度;另一幅为某机场卫星遥感图像,用于评价各种重采样方法在旋转图像方面采样的性能,并以定量参数(相关系数及光谱真实性)比较各种采样方法。结果表明,通量守恒重采样法对原始图像的信息保真效果最好,更适用于卫星遥感图像数据融合中的重采样。 展开更多
关键词 通量守恒重采样法 最邻近插值法 双线性插值法 三次卷积插值法
在线阅读 下载PDF
两种改进的局部阈值分割算法 被引量:11
16
作者 王亮亮 王黎 +1 位作者 高晓蓉 王泽勇 《现代电子技术》 2009年第14期78-80,共3页
局部阈值分割法存在两个明显的缺点:当一个子块几乎完全属于背景或目标时,直方图为单峰,很难进行分割;当目标被分在不同子块时,分割结果存在块状效应。为此,结合全局阈值中的迭代法和局部阈值法,提出最近邻插值阈值分割算法,并在这种算... 局部阈值分割法存在两个明显的缺点:当一个子块几乎完全属于背景或目标时,直方图为单峰,很难进行分割;当目标被分在不同子块时,分割结果存在块状效应。为此,结合全局阈值中的迭代法和局部阈值法,提出最近邻插值阈值分割算法,并在这种算法的基础上,利用线性插值,提出等间距插值阈值分割的算法,并通过仿真试验说明这两种算法在分割图像时的有效性和可行性。 展开更多
关键词 阈值分割 迭代法 最近邻插值 等间距插值
在线阅读 下载PDF
自然单元法在Winkler地基薄板计算中的应用 被引量:8
17
作者 曾祥勇 朱爱军 邓安福 《计算力学学报》 EI CAS CSCD 北大核心 2008年第4期547-551,共5页
自然单元法是一种基于Voronoi图及Delaunay三角形剖分图,以自然邻接点插值为试函数的一种无网格数值方法。本文以目前该方法中自然邻接点的Laplace插值形函数为基础,求出了其一阶及二阶导函数,建立了Winkler地基上薄板弯曲挠度的自然单... 自然单元法是一种基于Voronoi图及Delaunay三角形剖分图,以自然邻接点插值为试函数的一种无网格数值方法。本文以目前该方法中自然邻接点的Laplace插值形函数为基础,求出了其一阶及二阶导函数,建立了Winkler地基上薄板弯曲挠度的自然单元法求解控制方程,并编制了相应的计算程序,通过算例分析表明了本文方法的可行性和有效性。 展开更多
关键词 自然单元法 Laplace插值函数 自然邻接点 薄板弯曲 无网格法 WINKLER地基
在线阅读 下载PDF
Winkler地基上厚板分析的自然单元法 被引量:7
18
作者 曾祥勇 朱爱军 邓安福 《固体力学学报》 CAS CSCD 北大核心 2008年第2期163-169,共7页
以自然单元法中自然邻接点的Laplace插值形函数为基础,基于Mindlin厚板理论,建立了Winkler地基上厚板弯曲挠度的自然单元法求解控制方程,并进行了相应的程序实现,最后通过算例分析,表明了该文方法的可行性和有效性.
关键词 自然单元法 Laplace插值函数 自然邻接点 MINDLIN板 无网格法
在线阅读 下载PDF
基于自然单元法的极限上限分析 被引量:6
19
作者 周书涛 刘应华 陈莘莘 《固体力学学报》 CAS CSCD 北大核心 2012年第1期39-47,共9页
自然单元法是一种基于离散点集的Voronoi图和Delaunay三角化几何信息,以自然邻近插值为试函数的新型数值方法.相对于一般无网格法中常采用的移动最小二乘近似而言,自然邻近插值不涉及到复杂的矩阵求逆运算,更不需要任何人为的参数,可以... 自然单元法是一种基于离散点集的Voronoi图和Delaunay三角化几何信息,以自然邻近插值为试函数的新型数值方法.相对于一般无网格法中常采用的移动最小二乘近似而言,自然邻近插值不涉及到复杂的矩阵求逆运算,更不需要任何人为的参数,可以提高计算效率.采用该方法构造的形函数满足Delta函数的性质,可以像有限元一样准确地施加边界条件,可以方便处理场函数及其导数的不连续性的问题.论文将自然单元法应用到极限上限分析中,编制了相应的计算程序,通过极限分析的几个经典算例进行了验证,同时采用类似于分片应力磨平的方式,编制相应的磨平程序,由计算点上的塑性耗散功外推得到了节点上的塑性耗散功的值,从而画出了极限状态下结构的塑性耗散功的分布云图.计算结果表明采用自然单元法求解极限上限分析具有稳定性好,精度高,收敛快等优点. 展开更多
关键词 自然单元法 自然邻近插值 极限上限分析 Sibson插值
原文传递
双参数地基上Kirchhoff板计算的无网格自然单元法 被引量:4
20
作者 曾祥勇 张鹞 邓安福 《工程力学》 EI CSCD 北大核心 2008年第5期196-201,共6页
自然单元法是一种基于Voronoi图及Delaunay三角形剖分图,以自然邻接点插值函数为试函数的无网格数值方法。以目前该方法中自然邻接点的Laplace插值形函数为基础,求出了其一阶及二阶导函数,建立了双参数地基上Kirchhoff板弯曲挠度的自然... 自然单元法是一种基于Voronoi图及Delaunay三角形剖分图,以自然邻接点插值函数为试函数的无网格数值方法。以目前该方法中自然邻接点的Laplace插值形函数为基础,求出了其一阶及二阶导函数,建立了双参数地基上Kirchhoff板弯曲挠度的自然单元法求解控制方程,并编制了相应的计算程序。通过算例分析表明了该文方法的可行性和有效性。 展开更多
关键词 无网格法 自然单元法 Laplace插值函数 自然邻接点 Kirchhoff板弯曲 双参数地基
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部