期刊文献+
共找到1,607篇文章
< 1 2 81 >
每页显示 20 50 100
A State of Art Analysis of Telecommunication Data by k-Means and k-Medoids Clustering Algorithms
1
作者 T. Velmurugan 《Journal of Computer and Communications》 2018年第1期190-202,共13页
Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-clus... Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-cluster similarity and low inter-cluster similarity. Clustering techniques are applied in different domains to predict future trends of available data and its uses for the real world. This research work is carried out to find the performance of two of the most delegated, partition based clustering algorithms namely k-Means and k-Medoids. A state of art analysis of these two algorithms is implemented and performance is analyzed based on their clustering result quality by means of its execution time and other components. Telecommunication data is the source data for this analysis. The connection oriented broadband data is given as input to find the clustering quality of the algorithms. Distance between the server locations and their connection is considered for clustering. Execution time for each algorithm is analyzed and the results are compared with one another. Results found in comparison study are satisfactory for the chosen application. 展开更多
关键词 k-means algorithm k-Medoids algorithm DATA clustering Time COMPLEXITY TELECOMMUNICATION DATA
暂未订购
Optimization of constitutive parameters of foundation soils k-means clustering analysis 被引量:7
2
作者 Muge Elif Orakoglu Cevdet Emin Ekinci 《Research in Cold and Arid Regions》 CSCD 2013年第5期626-636,共11页
The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and ... The goal of this study was to optimize the constitutive parameters of foundation soils using a k-means algorithm with clustering analysis. A database was collected from unconfined compression tests, Proctor tests and grain distribution tests of soils taken from three different types of foundation pits: raft foundations, partial raft foundations and strip foundations. k-means algorithm with clustering analysis was applied to determine the most appropriate foundation type given the un- confined compression strengths and other parameters of the different soils. 展开更多
关键词 foundation soil regression model k-means clustering analysis
在线阅读 下载PDF
Improved k-means clustering algorithm 被引量:16
3
作者 夏士雄 李文超 +2 位作者 周勇 张磊 牛强 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期435-438,共4页
In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering a... In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering algorithm is proposed. First, the concept of a silhouette coefficient is introduced, and the optimal clustering number Kopt of a data set with unknown class information is confirmed by calculating the silhouette coefficient of objects in clusters under different K values. Then the distribution of the data set is obtained through hierarchical clustering and the initial clustering-centers are confirmed. Finally, the clustering is completed by the traditional k-means clustering. By the theoretical analysis, it is proved that the improved k-means clustering algorithm has proper computational complexity. The experimental results of IRIS testing data set show that the algorithm can distinguish different clusters reasonably and recognize the outliers efficiently, and the entropy generated by the algorithm is lower. 展开更多
关键词 clustering k-means algorithm silhouette coefficient
在线阅读 下载PDF
Multifactor diagnostic model of converter energy consumption based on K-means algorithm and its application
4
作者 Fei-xiang Dai Guang Chen +3 位作者 Xiang-jun Bao Gong-guo Liu Lu Zhang Xiao-jing Yang 《Journal of Iron and Steel Research International》 2025年第8期2359-2369,共11页
To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is pla... To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is placed on the critical components of material and heat balance.Through a thorough analysis of the interactions between various components and energy consumptions,six pivotal factors have been identified—raw material composition,steel type,steel temperature,slag temperature,recycling practices,and operational parameters.Utilizing a framework based on an equivalent energy consumption model,an integrated intelligent diagnostic model has been developed that encapsulates these factors,providing a comprehensive assessment tool for converter energy consumption.Employing the K-means clustering algorithm,historical operational data from the converter have been meticulously analyzed to determine baseline values for essential variables such as energy consumption and recovery rates.Building upon this data-driven foundation,an innovative online system for the intelligent diagnosis of converter energy consumption has been crafted and implemented,enhancing the precision and efficiency of energy management.Upon implementation with energy consumption data at a steel plant in 2023,the diagnostic analysis performed by the system exposed significant variations in energy usage across different converter units.The analysis revealed that the most significant factor influencing the variation in energy consumption for both furnaces was the steel grade,with contributions of−0.550 and 0.379. 展开更多
关键词 Equivalent energy consumption model Intelligent diagnostic model k-means clustering algorithm Online system Energy management
原文传递
Clustering analysis algorithm for security supervising data based on semantic description in coal mines 被引量:1
5
作者 孟凡荣 周勇 夏士雄 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期354-357,共4页
In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising... In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising data based on a semantic description in coal mines is studied.First,the semantic and numerical-based hybrid description method of security supervising data in coal mines is described.Secondly,the similarity measurement method of semantic and numerical data are separately given and a weight-based hybrid similarity measurement method for the security supervising data based on a semantic description in coal mines is presented.Thirdly,taking the hybrid similarity measurement method as the distance criteria and using a grid methodology for reference,an improved CURE clustering algorithm based on the grid is presented.Finally,the simulation results of a security supervising data set in coal mines validate the efficiency of the algorithm. 展开更多
关键词 semantic description clustering analysis algorithm similarity measurement
在线阅读 下载PDF
New density clustering-based approach for failure mode and effect analysis considering opinion evolution and bounded confidence
6
作者 WANG Jian ZHU Jingyi +1 位作者 SHI Hua LIU Huchen 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1491-1506,共16页
Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose ch... Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose challenges in prac-tical applications.To improve the conventional FMEA,many modified FMEA models have been suggested.However,the majority of them inadequately address consensus issues and focus on achieving a complete ranking of failure modes.In this research,we propose a new FMEA approach that integrates a two-stage consensus reaching model and a density peak clus-tering algorithm for the assessment and clustering of failure modes.Firstly,we employ the interval 2-tuple linguistic vari-ables(I2TLVs)to express the uncertain risk evaluations provided by FMEA experts.Then,a two-stage consensus reaching model is adopted to enable FMEA experts to reach a consensus.Next,failure modes are categorized into several risk clusters using a density peak clustering algorithm.Finally,the proposed FMEA is illustrated by a case study of load-bearing guidance devices of subway systems.The results show that the proposed FMEA model can more easily to describe the uncertain risk information of failure modes by using the I2TLVs;the introduction of an endogenous feedback mechanism and an exogenous feedback mechanism can accelerate the process of consensus reaching;and the density peak clustering of failure modes successfully improves the practical applicability of FMEA. 展开更多
关键词 failure mode and effect analysis(FMEA) interval 2-tuple linguistic variable(I2TLV) consensus reaching density peak clustering algorithm
在线阅读 下载PDF
An efficient enhanced k-means clustering algorithm 被引量:30
7
作者 FAHIM A.M SALEM A.M +1 位作者 TORKEY F.A RAMADAN M.A 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第10期1626-1633,共8页
In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared dista... In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this paper, we present a simple and efficient clustering algorithm based on the k-means algorithm, which we call enhanced k-means algorithm. This algorithm is easy to implement, requiring a simple data structure to keep some information in each iteration to be used in the next iteration. Our experimental results demonstrated that our scheme can improve the computational speed of the k-means algorithm by the magnitude in the total number of distance calculations and the overall time of computation. 展开更多
关键词 clustering algorithms cluster analysis k-means algorithm Data analysis
在线阅读 下载PDF
Investigation of the J-TEXT plasma events by k-means clustering algorithm 被引量:1
8
作者 李建超 张晓卿 +11 位作者 张昱 Abba Alhaji BALA 柳惠平 周帼红 王能超 李达 陈忠勇 杨州军 陈志鹏 董蛟龙 丁永华 the J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第8期38-43,共6页
Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,th... Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,the k-means clustering algorithm,is utilized to investigate and identify plasma events in the J-TEXT plasma.This method can cluster diverse plasma events with homogeneous features,and then these events can be identified if given few manually labeled examples based on physical understanding.A survey of clustered events reveals that the k-means algorithm can make plasma events(rotating tearing mode,sawtooth oscillations,and locked mode)gathering in Euclidean space composed of multi-dimensional diagnostic data,like soft x-ray emission intensity,edge toroidal rotation velocity,the Mirnov signal amplitude and so on.Based on the cluster analysis results,an approximate analytical model is proposed to rapidly identify plasma events in the J-TEXT plasma.The cluster analysis method is conducive to data markers of massive diagnostic data. 展开更多
关键词 k-means cluster analysis plasma event machine learning
在线阅读 下载PDF
Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms 被引量:1
9
作者 Jalali Zakaria 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期959-966,共8页
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien... Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions. 展开更多
关键词 SMR based on continuous functions Slope stability analysis k-means and FCM clustering algorithms Validation of clustering algorithms Sangan iron ore mines
在线阅读 下载PDF
Polarimetric Meteorological Satellite Data Processing Software Classification Based on Principal Component Analysis and Improved K-Means Algorithm 被引量:1
10
作者 Manyun Lin Xiangang Zhao +3 位作者 Cunqun Fan Lizi Xie Lan Wei Peng Guo 《Journal of Geoscience and Environment Protection》 2017年第7期39-48,共10页
With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In th... With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In this paper, a set of software classification method based on software operating characteristics is proposed. The method uses software run-time resource consumption to describe the software running characteristics. Firstly, principal component analysis (PCA) is used to reduce the dimension of software running feature data and to interpret software characteristic information. Then the modified K-means algorithm was used to classify the meteorological data processing software. Finally, it combined with the results of principal component analysis to explain the significance of various types of integrated software operating characteristics. And it is used as the basis for optimizing the allocation of software hardware resources and improving the efficiency of software operation. 展开更多
关键词 Principal COMPONENT analysis Improved k-mean algorithm METEOROLOGICAL Data Processing FEATURE analysis SIMILARITY algorithm
在线阅读 下载PDF
Research and Application on Spark Clustering Algorithm in Campus Big Data Analysis 被引量:2
11
作者 Qing Hou Guangjian Wang +2 位作者 Xiaozheng Wang Jiaxi Xu Yang Xin 《Journal of Computer Science Research》 2020年第1期16-20,共5页
Big data analysis has penetrated into all fields of society and has brought about profound changes.However,there is relatively little research on big data supporting student management regarding college and university... Big data analysis has penetrated into all fields of society and has brought about profound changes.However,there is relatively little research on big data supporting student management regarding college and university’s big data.Taking the student card information as the research sample,using spark big data mining technology and K-Means clustering algorithm,taking scholarship evaluation as an example,the big data is analyzed.Data includes analysis of students’daily behavior from multiple dimensions,and it can prevent the unreasonable scholarship evaluation caused by unfair factors such as plagiarism,votes of teachers and students,etc.At the same time,students’absenteeism,physical health and psychological status in advance can be predicted,which makes student management work more active,accurate and effective. 展开更多
关键词 SPARK clustering algorithm Big data Data analysis Mllib
在线阅读 下载PDF
Hybrid Genetic Algorithm with K-Means for Clustering Problems 被引量:1
12
作者 Ahamed Al Malki Mohamed M. Rizk +1 位作者 M. A. El-Shorbagy A. A. Mousa 《Open Journal of Optimization》 2016年第2期71-83,共14页
The K-means method is one of the most widely used clustering methods and has been implemented in many fields of science and technology. One of the major problems of the k-means algorithm is that it may produce empty c... The K-means method is one of the most widely used clustering methods and has been implemented in many fields of science and technology. One of the major problems of the k-means algorithm is that it may produce empty clusters depending on initial center vectors. Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary principles of natural selection and genetics. This paper presents a hybrid version of the k-means algorithm with GAs that efficiently eliminates this empty cluster problem. Results of simulation experiments using several data sets prove our claim. 展开更多
关键词 cluster analysis Genetic algorithm k-means
在线阅读 下载PDF
Using genetic algorithm based fuzzy adaptive resonance theory for clustering analysis 被引量:3
13
作者 LIU Bo WANG Yong WANG Hong-jian 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期547-551,共5页
关键词 聚类分析 遗传算法 模糊自适应谐振理论 人工神经网络
在线阅读 下载PDF
Similarity matrix-based K-means algorithm for text clustering
14
作者 曹奇敏 郭巧 吴向华 《Journal of Beijing Institute of Technology》 EI CAS 2015年第4期566-572,共7页
K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo... K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable. 展开更多
关键词 text clustering k-means algorithm similarity matrix F-MEASURE
在线阅读 下载PDF
Plant Leaf Diseases Classification Using Improved K-Means Clustering and SVM Algorithm for Segmentation
15
作者 Mona Jamjoom Ahmed Elhadad +1 位作者 Hussein Abulkasim Safia Abbas 《Computers, Materials & Continua》 SCIE EI 2023年第7期367-382,共16页
Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease ... Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease and treating it is pretty challenging in this period.Image processing is employed to detect plant disease since it requires much effort and an extended processing period.The main goal of this study is to discover the disease that affects the plants by creating an image processing system that can recognize and classify four different forms of plant diseases,including Phytophthora infestans,Fusarium graminearum,Puccinia graminis,tomato yellow leaf curl.Therefore,this work uses the Support vector machine(SVM)classifier to detect and classify the plant disease using various steps like image acquisition,Pre-processing,Segmentation,feature extraction,and classification.The gray level co-occurrence matrix(GLCM)and the local binary pattern features(LBP)are used to identify the disease-affected portion of the plant leaf.According to experimental data,the proposed technology can correctly detect and diagnose plant sickness with a 97.2 percent accuracy. 展开更多
关键词 SVM machine learning GLCM algorithm k-means clustering LBP
在线阅读 下载PDF
An Improved K-Means Algorithm Based on Initial Clustering Center Optimization
16
作者 LI Taihao NAREN Tuya +2 位作者 ZHOU Jianshe REN Fuji LIU Shupeng 《ZTE Communications》 2017年第B12期43-46,共4页
The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the ... The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm. 展开更多
关键词 clustering k-means algorithm initial clustering center
在线阅读 下载PDF
基于K-means算法的艾德莱斯绸色彩提取方法的优化设计
17
作者 刘恒君 饶蕾 曹远荣 《毛纺科技》 北大核心 2025年第8期82-90,共9页
为了提高艾德莱斯绸的数据化以及数字化研究,针对艾德莱斯绸本身的工艺特征优化设计一种基于K-means聚类算法的色彩提取方法。首先采用非接触扫描仪扫描样本获得图像;通过中值滤波对比图像在不同窗口尺寸下的平滑降噪效果,确定最适合艾... 为了提高艾德莱斯绸的数据化以及数字化研究,针对艾德莱斯绸本身的工艺特征优化设计一种基于K-means聚类算法的色彩提取方法。首先采用非接触扫描仪扫描样本获得图像;通过中值滤波对比图像在不同窗口尺寸下的平滑降噪效果,确定最适合艾德莱斯绸图像预处理的窗口数值;再将图像的色彩信息从RGB空间转为更符合视觉分析的HSV空间;结合艾德莱斯绸本身纹样特征,对比2种常见的最佳类簇数目k值选取办法,并进行k值选取办法的优化和对比;最后将聚类算法与数据分析相结合,采用多个k值分别确定图像单个色彩。结果表明:该优化方式可以较为准确地提取出复杂的艾德莱斯绸色彩及其占比情况,为提取复杂图像色彩提供了新的研究思路,拓宽传统纹样图像的色彩研究方式。 展开更多
关键词 k-means聚类算法 艾德莱斯绸 色彩提取 数据分析
在线阅读 下载PDF
结合HSV-HS与K-means聚类算法的冬小麦苗密度估测
18
作者 陶婷 孟炀 +2 位作者 杜晓初 梅新 杨小冬 《测绘科学》 北大核心 2025年第4期50-62,共13页
针对植株高密度、植被覆盖度梯度差异弱,苗密度难以高精度估测的问题,该文通过RGB-HSV颜色空间转换,构建HSV-HS分割模型在苗期提取植被信息。利用K-means聚类分析将其分为小麦主茎和叶缘背景两部分。对聚类后的小麦主茎构建连通域并识... 针对植株高密度、植被覆盖度梯度差异弱,苗密度难以高精度估测的问题,该文通过RGB-HSV颜色空间转换,构建HSV-HS分割模型在苗期提取植被信息。利用K-means聚类分析将其分为小麦主茎和叶缘背景两部分。对聚类后的小麦主茎构建连通域并识别下部角点中心位置,定位主茎基,获取主茎基基数,并构建苗密度估测模型。与传统植被覆盖度、植被指数估测苗密度模型相比,本方法在冬小麦苗密度估测中表现出更高的精度。基于偏最小二乘法算法结合主茎基数构建基本苗密度估测模型,整体决定系数(R2)最高,均方根误差(RMSE)最小。通过不同参数组合,表明以主茎基数结合植被指数所构建偏最小二乘法的苗密度估测模型精度最高。利用HSV-HS结合K-means聚类方法获取的主茎基数,再叠加植被指数所构建的偏最小二乘法算法模型,在高密度、叶片重叠率高的情况下,能相对精准估测冬小麦苗密度。 展开更多
关键词 冬小麦 k-means聚类分析算法 主茎基识别 苗密度估测 无人机数码影像
原文传递
基于K-means聚类算法和BP神经网络的代理购电量预测模型研究 被引量:2
19
作者 于志诚 穆士才 +4 位作者 梁晔 李镓辰 林华 陈己宸 金鑫 《湖南电力》 2025年第1期68-72,共5页
通过对某地区代理购电用户的深入画像分析,研究不同因素对代理购电用户电量的影响;通过聚类算法实现用户群体的分类;通过神经网络算法将纵向时序电量和横向影响因素纳入预测公式,针对不同聚类簇构建符合其特征的预测模型;最后将模型整合... 通过对某地区代理购电用户的深入画像分析,研究不同因素对代理购电用户电量的影响;通过聚类算法实现用户群体的分类;通过神经网络算法将纵向时序电量和横向影响因素纳入预测公式,针对不同聚类簇构建符合其特征的预测模型;最后将模型整合,实现对整体电量的高准确率预测。 展开更多
关键词 代理购电 电量预测 聚类算法 神经网络 画像分析
在线阅读 下载PDF
基于改进K-means++聚类算法的汽车行驶工况构建
20
作者 陈俊杰 赵红 +3 位作者 罗勇 丁晓云 田嘉昊 张泽谦 《青岛大学学报(工程技术版)》 2025年第2期67-74,共8页
为了通过科学方法优化交通管理,减少环境污染,提出了一种基于改进的K-means++聚类算法,结合马尔科夫链理论,对汽车行驶工况进行分析构建。对收集到的车辆行驶数据进行预处理,包括数据清洗和特征提取,通过主成分分析降低数据维度,引入基... 为了通过科学方法优化交通管理,减少环境污染,提出了一种基于改进的K-means++聚类算法,结合马尔科夫链理论,对汽车行驶工况进行分析构建。对收集到的车辆行驶数据进行预处理,包括数据清洗和特征提取,通过主成分分析降低数据维度,引入基于余弦相似度度量的K-means++算法,通过肘部法则确定最佳聚类数目。结果表明,4类行驶工况能够有效模拟实际驾驶情况,通过聚类结果的平均轮廓系数对比证明,改进算法的聚类性能显著提升。利用马尔科夫链模型验证各工况之间的转移关系,构建最终汽车行驶工况。主要特征参数平均相对误差仅为4.726%,在模拟实际道路条件方面具有较高的合理性和准确性。 展开更多
关键词 聚类算法 汽车行驶工况 主成分分析 马尔科夫链
在线阅读 下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部