期刊文献+
共找到287,358篇文章
< 1 2 250 >
每页显示 20 50 100
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
1
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization k-means clustering algorithm
在线阅读 下载PDF
基于VMD-SSA-K-means-iForest的重力坝监测数据异常模式混合识别算法研究
2
作者 李铁 李涵曼 +2 位作者 王福生 徐量 郭瑞 《水电能源科学》 北大核心 2026年第1期182-187,共6页
重力坝监测数据的异常识别对大坝安全评估具有重要意义,针对现有方法在模式辨识和特征提取方面的局限性,提出一种基于VMD-SSA-KMeans-iForest的重力坝监测数据异常值混合识别方法,该方法通过引入变分模态分解(VMD)优化SSA分解过程,显著... 重力坝监测数据的异常识别对大坝安全评估具有重要意义,针对现有方法在模式辨识和特征提取方面的局限性,提出一种基于VMD-SSA-KMeans-iForest的重力坝监测数据异常值混合识别方法,该方法通过引入变分模态分解(VMD)优化SSA分解过程,显著提升了特征提取的精度和鲁棒性。在此基础上,构建了基于K-means聚类与孤立森林(iForest)协同的异常识别框架,并将该方法应用于W重力坝异常数据识别中。结果表明,所提方法的异常识别准确率提升了2.5%,同时有效区分了结构损伤与仪器故障引起的异常模式,为重力坝安全评估提供了更可靠的技术支持。 展开更多
关键词 重力坝 奇异谱分析 变分模态分解 k-means聚类 孤立森林 异常模式识别
原文传递
基于Space P和K-means的货运航司航线网络特征分析研究
3
作者 罗凤娥 卫昌波 +1 位作者 韩晓彤 郭玲玉 《现代电子技术》 北大核心 2026年第1期102-107,共6页
针对航空货运行业的迅速扩张,航空货运网络结构变得更加复杂,文中通过Space P建模方法构建了货运航空公司航线网络模型,并运用K-means聚类算法对网络进行了深入分析。选取度、平均路径长度、聚类系数和中间度等关键网络特性指标对航线... 针对航空货运行业的迅速扩张,航空货运网络结构变得更加复杂,文中通过Space P建模方法构建了货运航空公司航线网络模型,并运用K-means聚类算法对网络进行了深入分析。选取度、平均路径长度、聚类系数和中间度等关键网络特性指标对航线网络进行层次化分类,揭示了网络的复杂特征和层次结构。通过仿真实验评估了网络的小世界特性,并利用轮廓系数得到不同K值下的聚类结果,进而确定最优聚类结果。同时,模拟了航线网络在遭受攻击时的鲁棒性,实验结果表明:在航线网络较为脆弱的情况下,该方法为货运航司航线网络的优化和抗风险能力的提升提供了重要参考。 展开更多
关键词 航空货运 Space P 航线网络 复杂网络 聚类算法 网络特征
在线阅读 下载PDF
Multifactor diagnostic model of converter energy consumption based on K-means algorithm and its application
4
作者 Fei-xiang Dai Guang Chen +3 位作者 Xiang-jun Bao Gong-guo Liu Lu Zhang Xiao-jing Yang 《Journal of Iron and Steel Research International》 2025年第8期2359-2369,共11页
To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is pla... To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is placed on the critical components of material and heat balance.Through a thorough analysis of the interactions between various components and energy consumptions,six pivotal factors have been identified—raw material composition,steel type,steel temperature,slag temperature,recycling practices,and operational parameters.Utilizing a framework based on an equivalent energy consumption model,an integrated intelligent diagnostic model has been developed that encapsulates these factors,providing a comprehensive assessment tool for converter energy consumption.Employing the K-means clustering algorithm,historical operational data from the converter have been meticulously analyzed to determine baseline values for essential variables such as energy consumption and recovery rates.Building upon this data-driven foundation,an innovative online system for the intelligent diagnosis of converter energy consumption has been crafted and implemented,enhancing the precision and efficiency of energy management.Upon implementation with energy consumption data at a steel plant in 2023,the diagnostic analysis performed by the system exposed significant variations in energy usage across different converter units.The analysis revealed that the most significant factor influencing the variation in energy consumption for both furnaces was the steel grade,with contributions of−0.550 and 0.379. 展开更多
关键词 Equivalent energy consumption model Intelligent diagnostic model k-means clustering algorithm Online system Energy management
原文传递
基于K-means聚类算法的智能养蜂系统研究
5
作者 魏婷婷 《信息记录材料》 2026年第2期69-71,共3页
针对智能养蜂领域蜂群状态不可视、预警机制滞后的现实挑战,本文构建了集数据采集、健康评估与异常响应于一体的系统架构,研究了图像、声音与环境参数在蜂群状态判别中的融合机制,分析了聚类算法在健康分类中的适配方式与判定精度,探讨... 针对智能养蜂领域蜂群状态不可视、预警机制滞后的现实挑战,本文构建了集数据采集、健康评估与异常响应于一体的系统架构,研究了图像、声音与环境参数在蜂群状态判别中的融合机制,分析了聚类算法在健康分类中的适配方式与判定精度,探讨了基于马氏距离与动态阈值的异常预警触发模型。本文强化了蜂群状态感知与风险识别的联动逻辑,为构建具备智能判断能力的数字化蜂业管控系统提供了理论支撑与工程价值。 展开更多
关键词 智能养蜂 健康评估 k-means聚类 异常预警
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
6
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms 被引量:1
7
作者 Jalali Zakaria 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期959-966,共8页
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien... Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions. 展开更多
关键词 SMR based on continuous functions Slope stability analysis k-means and FCM clustering algorithms Validation of clustering algorithms Sangan iron ore mines
在线阅读 下载PDF
Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management 被引量:23
8
作者 Zizheng Guo Yu Shi +2 位作者 Faming Huang Xuanmei Fan Jinsong Huang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第6期243-261,共19页
Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments, but most studies use GIS-based classification methods to conduct susceptibility zonation.This study pres... Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments, but most studies use GIS-based classification methods to conduct susceptibility zonation.This study presents a machine learning approach based on the C5.0 decision tree(DT) model and the K-means cluster algorithm to produce a regional landslide susceptibility map. Yanchang County, a typical landslide-prone area located in northwestern China, was taken as the area of interest to introduce the proposed application procedure. A landslide inventory containing 82 landslides was prepared and subsequently randomly partitioned into two subsets: training data(70% landslide pixels) and validation data(30% landslide pixels). Fourteen landslide influencing factors were considered in the input dataset and were used to calculate the landslide occurrence probability based on the C5.0 decision tree model.Susceptibility zonation was implemented according to the cut-off values calculated by the K-means cluster algorithm. The validation results of the model performance analysis showed that the AUC(area under the receiver operating characteristic(ROC) curve) of the proposed model was the highest, reaching 0.88,compared with traditional models(support vector machine(SVM) = 0.85, Bayesian network(BN) = 0.81,frequency ratio(FR) = 0.75, weight of evidence(WOE) = 0.76). The landslide frequency ratio and frequency density of the high susceptibility zones were 6.76/km^(2) and 0.88/km^(2), respectively, which were much higher than those of the low susceptibility zones. The top 20% interval of landslide occurrence probability contained 89% of the historical landslides but only accounted for 10.3% of the total area.Our results indicate that the distribution of high susceptibility zones was more focused without containing more " stable" pixels. Therefore, the obtained susceptibility map is suitable for application to landslide risk management practices. 展开更多
关键词 Landslide susceptibility Frequency ratio C5.0 decision tree k-means cluster Classification Risk management
在线阅读 下载PDF
A State of Art Analysis of Telecommunication Data by k-Means and k-Medoids Clustering Algorithms
9
作者 T. Velmurugan 《Journal of Computer and Communications》 2018年第1期190-202,共13页
Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-clus... Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-cluster similarity and low inter-cluster similarity. Clustering techniques are applied in different domains to predict future trends of available data and its uses for the real world. This research work is carried out to find the performance of two of the most delegated, partition based clustering algorithms namely k-Means and k-Medoids. A state of art analysis of these two algorithms is implemented and performance is analyzed based on their clustering result quality by means of its execution time and other components. Telecommunication data is the source data for this analysis. The connection oriented broadband data is given as input to find the clustering quality of the algorithms. Distance between the server locations and their connection is considered for clustering. Execution time for each algorithm is analyzed and the results are compared with one another. Results found in comparison study are satisfactory for the chosen application. 展开更多
关键词 k-means algorithm k-Medoids algorithm DATA CLUSTERING Time COMPLEXITY TELECOMMUNICATION DATA
暂未订购
Improved k-means clustering algorithm 被引量:16
10
作者 夏士雄 李文超 +2 位作者 周勇 张磊 牛强 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期435-438,共4页
In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering a... In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering algorithm is proposed. First, the concept of a silhouette coefficient is introduced, and the optimal clustering number Kopt of a data set with unknown class information is confirmed by calculating the silhouette coefficient of objects in clusters under different K values. Then the distribution of the data set is obtained through hierarchical clustering and the initial clustering-centers are confirmed. Finally, the clustering is completed by the traditional k-means clustering. By the theoretical analysis, it is proved that the improved k-means clustering algorithm has proper computational complexity. The experimental results of IRIS testing data set show that the algorithm can distinguish different clusters reasonably and recognize the outliers efficiently, and the entropy generated by the algorithm is lower. 展开更多
关键词 CLUSTERING k-means algorithm silhouette coefficient
在线阅读 下载PDF
基于k-means算法的聚类个数确定方法改进 被引量:5
11
作者 王丙参 王国长 魏艳华 《统计与决策》 北大核心 2025年第7期59-64,共6页
文章基于k-means算法探讨了最优聚类个数k*的确定方法:第一类是统计量方法;第二类是聚类算法不稳定性方法,即基于两次聚类结果间的距离,利用交叉验证、随机抽样取交集、自助法来构建聚类算法估计不稳定性指标,并根据投票、最小化均值方... 文章基于k-means算法探讨了最优聚类个数k*的确定方法:第一类是统计量方法;第二类是聚类算法不稳定性方法,即基于两次聚类结果间的距离,利用交叉验证、随机抽样取交集、自助法来构建聚类算法估计不稳定性指标,并根据投票、最小化均值方法确定k^(*)。数值模拟结果显示:在给定k^(*)的情况下,聚类结果与标签的距离或相似度可作为评价聚类结果的指标,为聚类算法评价提供了新的借鉴;基于k-means算法确定k^(*)的前提是数据集根据欧氏距离可明显分为几簇,相对而言,聚类算法不稳定性方法优于统计量方法;对于不稳定性指标,交叉验证估计方法与随机抽样取交集估计方法对抽样个数稳健,抽样个数依次建议略少于样本容量的1/3、80%;自助抽样估计方法由于利用了全部样本,因此效率更高;4种不稳定性指标没有显著差异,投票与最小化均值方法也没有显著差异。 展开更多
关键词 k-means算法 聚类个数 统计量 不稳定性
在线阅读 下载PDF
基于深度自适应K-means++算法的电抗器声纹聚类方法 被引量:4
12
作者 闵永智 郝大宇 +2 位作者 王果 何怡刚 贺建山 《电力系统保护与控制》 北大核心 2025年第8期1-13,共13页
在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹... 在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹聚类方法。首先通过采用两阶段无监督策略微调的改进堆叠稀疏自编码器(stacked sparse autoencoder,SSAE),对快速傅里叶变换后的归一化频域数据提取电抗器原始声纹32维深度特征。进一步提出了依据最近邻聚类有效性指标(clustering validation index based on nearest neighbors,CVNN)的自适应K-means++聚类算法,构建了能自适应确定最优聚类个数的电抗器声纹聚类模型。最后通过西北地区某750 kV电抗器实测声纹数据集进行了验证。结果表明,DAKCA算法对无标签声纹数据在不同样本均衡程度下能够稳定提取32维深度特征,并实现最优聚类,为直接高效利用电抗器无标签声纹数据提供了参考。 展开更多
关键词 750 kV电抗器 声纹聚类 自适应聚类算法 稀疏自编码器 深度自适应k-means++算法
在线阅读 下载PDF
Comparing K-Means and Mean Shift Algorithms Performance Using Mahout in a Private Cloud Environment
13
作者 Paulo Muniz de Avila Roan Simoes da Silva +3 位作者 Luiz Angelo Valota Francisco Rodrigo Palucci Pantoni David Buzatto Sergio Donizetti Zorzo 《通讯和计算机(中英文版)》 2014年第1期45-51,共7页
关键词 分类算法 性能分析 K均值 漂移 亨利 k-means k-means 环境
在线阅读 下载PDF
基于改进K-means算法的室内可见光通信O-OFDM系统信道均衡技术 被引量:1
14
作者 贾科军 连江龙 +1 位作者 张常瑞 蔺莹 《电讯技术》 北大核心 2025年第1期96-102,共7页
在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随... 在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。 展开更多
关键词 可见光通信 光正交频分复用 多径信道 信道均衡 k-means算法 反向传播神经网络
在线阅读 下载PDF
An Optimisation Strategy for Electric Vehicle Charging Station Layout Incorporating Mini Batch K-Means and Simulated Annealing Algorithms
15
作者 Haojie Yang Xiang Wen Peng Geng 《Journal on Artificial Intelligence》 2024年第1期283-300,共18页
To enhance the rationality of the layout of electric vehicle charging stations,meet the actual needs of users,and optimise the service range and coverage efficiency of charging stations,this paper proposes an optimisa... To enhance the rationality of the layout of electric vehicle charging stations,meet the actual needs of users,and optimise the service range and coverage efficiency of charging stations,this paper proposes an optimisation strategy for the layout of electric vehicle charging stations that integrates Mini Batch K-Means and simulated annealing algorithms.By constructing a circle-like service area model with the charging station as the centre and a certain distance as the radius,the maximum coverage of electric vehicle charging stations in the region and the influence of different regional environments on charging demand are considered.Based on the real data of electric vehicle charging stations in Nanjing,Jiangsu Province,this paper uses the model proposed in this paper to optimise the layout of charging stations in the study area.The results show that the optimisation strategy incorporating Mini Batch K-Means and simulated annealing algorithms outperforms the existing charging station layouts in terms of coverage and the number of stations served,and compared to the original charging station layouts,the optimised charging station layouts have flatter Lorentzian curves and are closer to the average distribution.The proposed optimisation strategy not only improves the service efficiency and user satisfaction of EV(Electric Vehicle)charging stations but also provides a reference for the layout optimisation of EV charging stations in other cities,which has important practical value and promotion potential. 展开更多
关键词 Mini Batch k-means simulated annealing algorithm electric vehicle charging stations layout optimisation
在线阅读 下载PDF
高效的云外包隐私保护K-means聚类研究
16
作者 曹来成 靳娜维 +1 位作者 冯涛 郭显 《华中科技大学学报(自然科学版)》 北大核心 2025年第5期143-149,共7页
为提高云外包隐私保护K-means算法的聚类效率和计算来自多方用户的密文数据,提出一种可以高效计算多方密文的云外包隐私保护K-means聚类方案.首先,基于稀疏约束的非负矩阵分解算法实现了高维数据的低维表示,从而有效提高了K-means聚类... 为提高云外包隐私保护K-means算法的聚类效率和计算来自多方用户的密文数据,提出一种可以高效计算多方密文的云外包隐私保护K-means聚类方案.首先,基于稀疏约束的非负矩阵分解算法实现了高维数据的低维表示,从而有效提高了K-means聚类算法在高维数据下的聚类效果;然后,采用基于共用密钥的多密钥全同态加密技术解决了多方密文在云服务器进行K-means聚类时存在同态运算复杂的问题,在此过程中通过构建四个安全的基础协议使隐私信息得到了保护;最后,使用三角不等式定理实现K-means聚类算法的剪枝优化,减少了聚类中存在的冗余距离计算,提高了聚类效率.实验结果表明:所提方案当处理高维数据时有着较高的聚类效率,且准确率接近于明文数据下的聚类. 展开更多
关键词 k-means算法 多密钥全同态加密 云外包 隐私保护 高维数据
原文传递
基于K-means++和粒子群算法的SDN多控制器部署方法 被引量:1
17
作者 徐慧 吴美连 《湖北工业大学学报》 2025年第1期43-48,共6页
针对软件定义网络中的多控制器部署问题,首先通过K-means++算法对网络节点聚类,得到网络中初始控制域和控制器位置,然后使用粒子群算法以最小化时延和负载均衡为优化目标,多个粒子并行搜索最优解,进一步优化控制域和控制器位置。在小、... 针对软件定义网络中的多控制器部署问题,首先通过K-means++算法对网络节点聚类,得到网络中初始控制域和控制器位置,然后使用粒子群算法以最小化时延和负载均衡为优化目标,多个粒子并行搜索最优解,进一步优化控制域和控制器位置。在小、中、大型网络拓扑上与随机算法、K-means++算法、粒子群算法的多控制器部署方法比较,仿真结果表明,在中小型网络中,比其他3种算法在平均传播时延和负载均衡上更加稳定且时延更低,在大型网络中,平均传播时延,最坏传播时延和控制器的负载均衡上均优于其他3种算法。 展开更多
关键词 软件定义网络 多控制器部署 k-means++ 粒子群算法 时延 负载均衡
在线阅读 下载PDF
基于启发式交叉策略优化的K-Means聚类算法
18
作者 张立娜 张兴瑞 +2 位作者 马丽 于合龙 宋欣怡 《吉林大学学报(理学版)》 北大核心 2025年第6期1663-1672,共10页
针对传统K-Means算法对初始质心敏感、易陷入局部最优以及未能充分挖掘聚类结果潜在语义特征的问题,提出一种基于启发式交叉策略优化的K-Means聚类算法.首先,该算法通过密度驱动的启发式交叉初始化策略,筛选高密度区域的代表性父代点,... 针对传统K-Means算法对初始质心敏感、易陷入局部最优以及未能充分挖掘聚类结果潜在语义特征的问题,提出一种基于启发式交叉策略优化的K-Means聚类算法.首先,该算法通过密度驱动的启发式交叉初始化策略,筛选高密度区域的代表性父代点,并引入交叉系数动态生成多样性初始质心,以降低随机初始化导致的聚类结果波动性;其次,在聚类迭代过程中,结合父代点信息与簇内均值更新规则,通过交叉操作动态调整质心位置,解决了传统算法因局部最优导致的簇间重叠问题;最后,将优化后的聚类结果输入多层感知机,利用其非线性映射能力挖掘潜在特征,实现了聚类结果与深层语义特征的深度融合.实验结果表明,该算法的轮廓系数、Davies-Bouldin指数和调整Rand指数分别达0.634,1.398,0.621,显著优于其他改进算法,有效提升了算法的聚类准确性、稳定性和可解释性. 展开更多
关键词 启发式交叉策略 k-means聚类算法 多层感知机 特征融合
在线阅读 下载PDF
基于改进K-means的电力企业营销数据异常校核设计 被引量:1
19
作者 徐景龙 杨小龙 +2 位作者 马超 吴佐平 李静 《中国新技术新产品》 2025年第4期40-42,共3页
针对电力企业营销异常数据自动校核的效率问题,本文提出一种基于改进K-means算法的设计方案。通过优化K-means算法,采用自然最近邻搜索和相对密度度量,解决了低密度区域簇识别难题,对异常数据进行精确聚类。同时,本设计方案关注数据的... 针对电力企业营销异常数据自动校核的效率问题,本文提出一种基于改进K-means算法的设计方案。通过优化K-means算法,采用自然最近邻搜索和相对密度度量,解决了低密度区域簇识别难题,对异常数据进行精确聚类。同时,本设计方案关注数据的一致性、唯一性和完整性,保证了数据质量。试验结果表明,与传统K-means自动校核方法相比,本方案显著缩短了校核时间,提高了自动校核效率。以Flame、Pathbased等多个数据集为例,校核时间最多缩短了近一半,有效提高了电力企业营销异常数据自动校核的实时性和准确性,为电力企业提供了更高效、可靠的自动校核支持。 展开更多
关键词 k-means 异常数据 自动校核
在线阅读 下载PDF
基于K-means算法的通信系统安全防御方法
20
作者 闫卫刚 《兵工自动化》 北大核心 2025年第5期47-51,共5页
为提升通信系统入侵检测性能,在K-means算法基础上进行算法优化。针对网络数据特征聚类数量无法提前估计问题,提出K值有效性指标来确定聚类数量和评测聚类质量,同时考虑各类簇特征对聚类的影响,利用特征加权距离考虑类内紧密型和类间的... 为提升通信系统入侵检测性能,在K-means算法基础上进行算法优化。针对网络数据特征聚类数量无法提前估计问题,提出K值有效性指标来确定聚类数量和评测聚类质量,同时考虑各类簇特征对聚类的影响,利用特征加权距离考虑类内紧密型和类间的分离性,依此作为聚类中心点。实验结果表明:改进K-means入侵检测算法具有更优的检测率和误报率,能有效提升系统安全防御质量。 展开更多
关键词 k-means算法 通信系统 网络攻击 检测率
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部