期刊文献+
共找到287,508篇文章
< 1 2 250 >
每页显示 20 50 100
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
1
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization k-means clustering algorithm
在线阅读 下载PDF
基于VMD-SSA-K-means-iForest的重力坝监测数据异常模式混合识别算法研究
2
作者 李铁 李涵曼 +2 位作者 王福生 徐量 郭瑞 《水电能源科学》 北大核心 2026年第1期182-187,共6页
重力坝监测数据的异常识别对大坝安全评估具有重要意义,针对现有方法在模式辨识和特征提取方面的局限性,提出一种基于VMD-SSA-KMeans-iForest的重力坝监测数据异常值混合识别方法,该方法通过引入变分模态分解(VMD)优化SSA分解过程,显著... 重力坝监测数据的异常识别对大坝安全评估具有重要意义,针对现有方法在模式辨识和特征提取方面的局限性,提出一种基于VMD-SSA-KMeans-iForest的重力坝监测数据异常值混合识别方法,该方法通过引入变分模态分解(VMD)优化SSA分解过程,显著提升了特征提取的精度和鲁棒性。在此基础上,构建了基于K-means聚类与孤立森林(iForest)协同的异常识别框架,并将该方法应用于W重力坝异常数据识别中。结果表明,所提方法的异常识别准确率提升了2.5%,同时有效区分了结构损伤与仪器故障引起的异常模式,为重力坝安全评估提供了更可靠的技术支持。 展开更多
关键词 重力坝 奇异谱分析 变分模态分解 k-meanS聚类 孤立森林 异常模式识别
原文传递
Multifactor diagnostic model of converter energy consumption based on K-means algorithm and its application
3
作者 Fei-xiang Dai Guang Chen +3 位作者 Xiang-jun Bao Gong-guo Liu Lu Zhang Xiao-jing Yang 《Journal of Iron and Steel Research International》 2025年第8期2359-2369,共11页
To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is pla... To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is placed on the critical components of material and heat balance.Through a thorough analysis of the interactions between various components and energy consumptions,six pivotal factors have been identified—raw material composition,steel type,steel temperature,slag temperature,recycling practices,and operational parameters.Utilizing a framework based on an equivalent energy consumption model,an integrated intelligent diagnostic model has been developed that encapsulates these factors,providing a comprehensive assessment tool for converter energy consumption.Employing the K-means clustering algorithm,historical operational data from the converter have been meticulously analyzed to determine baseline values for essential variables such as energy consumption and recovery rates.Building upon this data-driven foundation,an innovative online system for the intelligent diagnosis of converter energy consumption has been crafted and implemented,enhancing the precision and efficiency of energy management.Upon implementation with energy consumption data at a steel plant in 2023,the diagnostic analysis performed by the system exposed significant variations in energy usage across different converter units.The analysis revealed that the most significant factor influencing the variation in energy consumption for both furnaces was the steel grade,with contributions of−0.550 and 0.379. 展开更多
关键词 Equivalent energy consumption model Intelligent diagnostic model k-means clustering algorithm Online system Energy management
原文传递
基于Space P和K-means的货运航司航线网络特征分析研究
4
作者 罗凤娥 卫昌波 +1 位作者 韩晓彤 郭玲玉 《现代电子技术》 北大核心 2026年第1期102-107,共6页
针对航空货运行业的迅速扩张,航空货运网络结构变得更加复杂,文中通过Space P建模方法构建了货运航空公司航线网络模型,并运用K-means聚类算法对网络进行了深入分析。选取度、平均路径长度、聚类系数和中间度等关键网络特性指标对航线... 针对航空货运行业的迅速扩张,航空货运网络结构变得更加复杂,文中通过Space P建模方法构建了货运航空公司航线网络模型,并运用K-means聚类算法对网络进行了深入分析。选取度、平均路径长度、聚类系数和中间度等关键网络特性指标对航线网络进行层次化分类,揭示了网络的复杂特征和层次结构。通过仿真实验评估了网络的小世界特性,并利用轮廓系数得到不同K值下的聚类结果,进而确定最优聚类结果。同时,模拟了航线网络在遭受攻击时的鲁棒性,实验结果表明:在航线网络较为脆弱的情况下,该方法为货运航司航线网络的优化和抗风险能力的提升提供了重要参考。 展开更多
关键词 航空货运 Space P 航线网络 复杂网络 聚类算法 网络特征
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
5
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
基于K-means聚类算法的智能养蜂系统研究
6
作者 魏婷婷 《信息记录材料》 2026年第2期69-71,共3页
针对智能养蜂领域蜂群状态不可视、预警机制滞后的现实挑战,本文构建了集数据采集、健康评估与异常响应于一体的系统架构,研究了图像、声音与环境参数在蜂群状态判别中的融合机制,分析了聚类算法在健康分类中的适配方式与判定精度,探讨... 针对智能养蜂领域蜂群状态不可视、预警机制滞后的现实挑战,本文构建了集数据采集、健康评估与异常响应于一体的系统架构,研究了图像、声音与环境参数在蜂群状态判别中的融合机制,分析了聚类算法在健康分类中的适配方式与判定精度,探讨了基于马氏距离与动态阈值的异常预警触发模型。本文强化了蜂群状态感知与风险识别的联动逻辑,为构建具备智能判断能力的数字化蜂业管控系统提供了理论支撑与工程价值。 展开更多
关键词 智能养蜂 健康评估 k-meanS聚类 异常预警
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
7
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
8
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Improved k-means clustering algorithm 被引量:16
9
作者 夏士雄 李文超 +2 位作者 周勇 张磊 牛强 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期435-438,共4页
In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering a... In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering algorithm is proposed. First, the concept of a silhouette coefficient is introduced, and the optimal clustering number Kopt of a data set with unknown class information is confirmed by calculating the silhouette coefficient of objects in clusters under different K values. Then the distribution of the data set is obtained through hierarchical clustering and the initial clustering-centers are confirmed. Finally, the clustering is completed by the traditional k-means clustering. By the theoretical analysis, it is proved that the improved k-means clustering algorithm has proper computational complexity. The experimental results of IRIS testing data set show that the algorithm can distinguish different clusters reasonably and recognize the outliers efficiently, and the entropy generated by the algorithm is lower. 展开更多
关键词 CLUSTERING k-means algorithm silhouette coefficient
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
10
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
基于k-means算法的聚类个数确定方法改进 被引量:5
11
作者 王丙参 王国长 魏艳华 《统计与决策》 北大核心 2025年第7期59-64,共6页
文章基于k-means算法探讨了最优聚类个数k*的确定方法:第一类是统计量方法;第二类是聚类算法不稳定性方法,即基于两次聚类结果间的距离,利用交叉验证、随机抽样取交集、自助法来构建聚类算法估计不稳定性指标,并根据投票、最小化均值方... 文章基于k-means算法探讨了最优聚类个数k*的确定方法:第一类是统计量方法;第二类是聚类算法不稳定性方法,即基于两次聚类结果间的距离,利用交叉验证、随机抽样取交集、自助法来构建聚类算法估计不稳定性指标,并根据投票、最小化均值方法确定k^(*)。数值模拟结果显示:在给定k^(*)的情况下,聚类结果与标签的距离或相似度可作为评价聚类结果的指标,为聚类算法评价提供了新的借鉴;基于k-means算法确定k^(*)的前提是数据集根据欧氏距离可明显分为几簇,相对而言,聚类算法不稳定性方法优于统计量方法;对于不稳定性指标,交叉验证估计方法与随机抽样取交集估计方法对抽样个数稳健,抽样个数依次建议略少于样本容量的1/3、80%;自助抽样估计方法由于利用了全部样本,因此效率更高;4种不稳定性指标没有显著差异,投票与最小化均值方法也没有显著差异。 展开更多
关键词 k-meanS算法 聚类个数 统计量 不稳定性
在线阅读 下载PDF
基于改进K-means算法的室内可见光通信O-OFDM系统信道均衡技术 被引量:1
12
作者 贾科军 连江龙 +1 位作者 张常瑞 蔺莹 《电讯技术》 北大核心 2025年第1期96-102,共7页
在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随... 在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。 展开更多
关键词 可见光通信 光正交频分复用 多径信道 信道均衡 k-means算法 反向传播神经网络
在线阅读 下载PDF
基于深度自适应K-means++算法的电抗器声纹聚类方法 被引量:4
13
作者 闵永智 郝大宇 +2 位作者 王果 何怡刚 贺建山 《电力系统保护与控制》 北大核心 2025年第8期1-13,共13页
在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹... 在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹聚类方法。首先通过采用两阶段无监督策略微调的改进堆叠稀疏自编码器(stacked sparse autoencoder,SSAE),对快速傅里叶变换后的归一化频域数据提取电抗器原始声纹32维深度特征。进一步提出了依据最近邻聚类有效性指标(clustering validation index based on nearest neighbors,CVNN)的自适应K-means++聚类算法,构建了能自适应确定最优聚类个数的电抗器声纹聚类模型。最后通过西北地区某750 kV电抗器实测声纹数据集进行了验证。结果表明,DAKCA算法对无标签声纹数据在不同样本均衡程度下能够稳定提取32维深度特征,并实现最优聚类,为直接高效利用电抗器无标签声纹数据提供了参考。 展开更多
关键词 750 kV电抗器 声纹聚类 自适应聚类算法 稀疏自编码器 深度自适应k-means++算法
在线阅读 下载PDF
高效的云外包隐私保护K-means聚类研究
14
作者 曹来成 靳娜维 +1 位作者 冯涛 郭显 《华中科技大学学报(自然科学版)》 北大核心 2025年第5期143-149,共7页
为提高云外包隐私保护K-means算法的聚类效率和计算来自多方用户的密文数据,提出一种可以高效计算多方密文的云外包隐私保护K-means聚类方案.首先,基于稀疏约束的非负矩阵分解算法实现了高维数据的低维表示,从而有效提高了K-means聚类... 为提高云外包隐私保护K-means算法的聚类效率和计算来自多方用户的密文数据,提出一种可以高效计算多方密文的云外包隐私保护K-means聚类方案.首先,基于稀疏约束的非负矩阵分解算法实现了高维数据的低维表示,从而有效提高了K-means聚类算法在高维数据下的聚类效果;然后,采用基于共用密钥的多密钥全同态加密技术解决了多方密文在云服务器进行K-means聚类时存在同态运算复杂的问题,在此过程中通过构建四个安全的基础协议使隐私信息得到了保护;最后,使用三角不等式定理实现K-means聚类算法的剪枝优化,减少了聚类中存在的冗余距离计算,提高了聚类效率.实验结果表明:所提方案当处理高维数据时有着较高的聚类效率,且准确率接近于明文数据下的聚类. 展开更多
关键词 k-meanS算法 多密钥全同态加密 云外包 隐私保护 高维数据
原文传递
基于启发式交叉策略优化的K-Means聚类算法
15
作者 张立娜 张兴瑞 +2 位作者 马丽 于合龙 宋欣怡 《吉林大学学报(理学版)》 北大核心 2025年第6期1663-1672,共10页
针对传统K-Means算法对初始质心敏感、易陷入局部最优以及未能充分挖掘聚类结果潜在语义特征的问题,提出一种基于启发式交叉策略优化的K-Means聚类算法.首先,该算法通过密度驱动的启发式交叉初始化策略,筛选高密度区域的代表性父代点,... 针对传统K-Means算法对初始质心敏感、易陷入局部最优以及未能充分挖掘聚类结果潜在语义特征的问题,提出一种基于启发式交叉策略优化的K-Means聚类算法.首先,该算法通过密度驱动的启发式交叉初始化策略,筛选高密度区域的代表性父代点,并引入交叉系数动态生成多样性初始质心,以降低随机初始化导致的聚类结果波动性;其次,在聚类迭代过程中,结合父代点信息与簇内均值更新规则,通过交叉操作动态调整质心位置,解决了传统算法因局部最优导致的簇间重叠问题;最后,将优化后的聚类结果输入多层感知机,利用其非线性映射能力挖掘潜在特征,实现了聚类结果与深层语义特征的深度融合.实验结果表明,该算法的轮廓系数、Davies-Bouldin指数和调整Rand指数分别达0.634,1.398,0.621,显著优于其他改进算法,有效提升了算法的聚类准确性、稳定性和可解释性. 展开更多
关键词 启发式交叉策略 k-meanS聚类算法 多层感知机 特征融合
在线阅读 下载PDF
基于K-means++和粒子群算法的SDN多控制器部署方法 被引量:1
16
作者 徐慧 吴美连 《湖北工业大学学报》 2025年第1期43-48,共6页
针对软件定义网络中的多控制器部署问题,首先通过K-means++算法对网络节点聚类,得到网络中初始控制域和控制器位置,然后使用粒子群算法以最小化时延和负载均衡为优化目标,多个粒子并行搜索最优解,进一步优化控制域和控制器位置。在小、... 针对软件定义网络中的多控制器部署问题,首先通过K-means++算法对网络节点聚类,得到网络中初始控制域和控制器位置,然后使用粒子群算法以最小化时延和负载均衡为优化目标,多个粒子并行搜索最优解,进一步优化控制域和控制器位置。在小、中、大型网络拓扑上与随机算法、K-means++算法、粒子群算法的多控制器部署方法比较,仿真结果表明,在中小型网络中,比其他3种算法在平均传播时延和负载均衡上更加稳定且时延更低,在大型网络中,平均传播时延,最坏传播时延和控制器的负载均衡上均优于其他3种算法。 展开更多
关键词 软件定义网络 多控制器部署 k-means++ 粒子群算法 时延 负载均衡
在线阅读 下载PDF
基于RSA模型和改进K-means算法的电商行业客户细分
17
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 k-meanS算法 密度峰值聚类 K近邻
在线阅读 下载PDF
基于K-means算法的通信系统安全防御方法
18
作者 闫卫刚 《兵工自动化》 北大核心 2025年第5期47-51,共5页
为提升通信系统入侵检测性能,在K-means算法基础上进行算法优化。针对网络数据特征聚类数量无法提前估计问题,提出K值有效性指标来确定聚类数量和评测聚类质量,同时考虑各类簇特征对聚类的影响,利用特征加权距离考虑类内紧密型和类间的... 为提升通信系统入侵检测性能,在K-means算法基础上进行算法优化。针对网络数据特征聚类数量无法提前估计问题,提出K值有效性指标来确定聚类数量和评测聚类质量,同时考虑各类簇特征对聚类的影响,利用特征加权距离考虑类内紧密型和类间的分离性,依此作为聚类中心点。实验结果表明:改进K-means入侵检测算法具有更优的检测率和误报率,能有效提升系统安全防御质量。 展开更多
关键词 k-meanS算法 通信系统 网络攻击 检测率
在线阅读 下载PDF
基于K-means聚类的旬邑彩贴剪纸色彩数字化提取与应用研究
19
作者 詹秦川 李育华 杜国龙 《包装工程》 北大核心 2025年第22期217-232,共16页
目的基于数字化手段将旬邑彩贴剪纸色彩特征和搭配关系进行量化,解析其丰富的色彩构成,为文化遗产的现代化传承与创新设计提供理论和技术支持。方法采用K-means聚类算法作为核心工具,对旬邑彩贴剪纸的色彩进行数字化特征提取。首先对采... 目的基于数字化手段将旬邑彩贴剪纸色彩特征和搭配关系进行量化,解析其丰富的色彩构成,为文化遗产的现代化传承与创新设计提供理论和技术支持。方法采用K-means聚类算法作为核心工具,对旬邑彩贴剪纸的色彩进行数字化特征提取。首先对采集的旬邑彩贴剪纸图像样本进行超分辨率和数据对齐等预处理,然后使用K-means算法分别对个体和群体对象进行2次聚类提取,得到个体和群体的特征色彩,构建色彩网络模型,而后进行色彩的HSV可视化分析,总结分析出旬邑彩贴剪纸的色彩特征,并对其色彩表征的多源成因进行了深入剖析。最后使用色彩网络模型指导配色,利用Python的Cv2、Scikit-Image、Pillow等库实现配色方案的批量生成,并将其应用到设计实践中。结果成功构建了基于K-means聚类算法的旬邑彩贴剪纸色彩数字化特征提取体系,并生成了具有传统色彩审美特征的配色方案。结论该方案能够较为客观地反映出旬邑彩贴剪纸的色彩特征,提升设计师的设计效率,满足现代设计的多样化需求,为非物质文化遗产的传承与创新提供新的思路。 展开更多
关键词 k-meanS聚类算法 色彩提取 旬邑彩贴剪纸 非物质文化遗产
在线阅读 下载PDF
基于K-means聚类算法的路口交通信号灯优化配置研究
20
作者 彭淑梅 魏树国 《北京工业职业技术学院学报》 2025年第4期10-14,共5页
以某旅游小镇景区附近的2条主干道为研究对象,通过部署在路口的智能监控设备,持续采集路口的实时车流量数据。通过不同时段车流量特征的对比分析,发现路口车流量呈显著的时段性差异。为缓解交通拥堵,引入K-means聚类算法进行聚类分析,... 以某旅游小镇景区附近的2条主干道为研究对象,通过部署在路口的智能监控设备,持续采集路口的实时车流量数据。通过不同时段车流量特征的对比分析,发现路口车流量呈显著的时段性差异。为缓解交通拥堵,引入K-means聚类算法进行聚类分析,提出了路口交通信号灯的优化配置措施。 展开更多
关键词 k-meanS聚类算法 交通流量 信号灯优化配置
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部