The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave...The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.展开更多
Stepping out of Danyang Railway Station,the large sign reading“China Danyang Optical City”immediately comes into view across the road.Inside the bustling marketplace,a dazzling array of eyeglass frames and lenses is...Stepping out of Danyang Railway Station,the large sign reading“China Danyang Optical City”immediately comes into view across the road.Inside the bustling marketplace,a dazzling array of eyeglass frames and lenses is neatly displayed in rows of shops,attracting consumers from across the country.展开更多
We connect magic(non-stabilizer)states,symmetric informationally complete positive operator valued measures(SIC-POVMs),and mutually unbiased bases(MUBs)in the context of group frames,and study their interplay.Magic st...We connect magic(non-stabilizer)states,symmetric informationally complete positive operator valued measures(SIC-POVMs),and mutually unbiased bases(MUBs)in the context of group frames,and study their interplay.Magic states are quantum resources in the stabilizer formalism of quantum computation.SIC-POVMs and MUBs are fundamental structures in quantum information theory with many applications in quantum foundations,quantum state tomography,and quantum cryptography,etc.In this work,we study group frames constructed from some prominent magic states,and further investigate their applications.Our method exploits the orbit of discrete Heisenberg-Weyl group acting on an initial fiducial state.We quantify the distance of the group frames from SIC-POVMs and MUBs,respectively.As a simple corollary,we reproduce a complete family of MUBs of any prime dimensional system by introducing the concept of MUB fiducial states,analogous to the well-known SIC-POVM fiducial states.We present an intuitive and direct construction of MUB fiducial states via quantum T-gates,and demonstrate that for the qubit system,there are twelve MUB fiducial states,which coincide with the H-type magic states.We compare MUB fiducial states and SIC-POVM fiducial states from the perspective of magic resource for stabilizer quantum computation.We further pose the challenging issue of identifying all MUB fiducial states in general dimensions.展开更多
This study presents the development of a Magnesium Alloy Seat Frame(MASF),supported by case studies from automotive original equipment manufacturers.The process covers integrated design,simulation,manufacturing,and te...This study presents the development of a Magnesium Alloy Seat Frame(MASF),supported by case studies from automotive original equipment manufacturers.The process covers integrated design,simulation,manufacturing,and testing,aiming to boost industry confidence in Mg alloy applications.A novel structural design is developed that integrates the headrest with the backrest,achieving a balance between lightweight performance and safety.Structural optimization is guided by stress–strain simulations under diverse conditions within a complete forward development process.Casting simulations are conducted to analyze process characteristics,resulting in a verified MASF yield rate exceeding 90%.The final 9.88 kg MASF represents a 24.6%(3.23 kg)weight reduction versus a steel seat.This research contributes to advancements in defect control technology for large die casting magnesium alloy parts and has broad implications for their application in automotive manufacturing.展开更多
With the rapid growth of China's economic strength,the demand and market share are also constantly increasing.The number ofcars is rapidly increasing,and a large amount of fuel is consumed as a result.The massive ...With the rapid growth of China's economic strength,the demand and market share are also constantly increasing.The number ofcars is rapidly increasing,and a large amount of fuel is consumed as a result.The massive release of vehicle exhaust seriously damages the natural environment,and the environmental crisis is becoming increasingly serious.This article follows the principles of improving fuel efficiency,reducing emissions,andenhancing vehicle performance.Using NX 12.0 software,a three-dimensional model of a certain type of dump truck frame is constructed based on actual parameters.ANSYS Workbench is used to simplify the geometric model,mesh division,and material definition,and a finite element model is constructed.Obtain the structural performance and natural vibration characteristics of the original chassis under four typical working conditions:bending,torsion,lifting,and unloading,through static analysis and modal analysis.On this basis,the dimensions of the components that bear less load on the original frame were optimized,and the topology of the second crossbeam and rear end corner of the subframe that bear less load on the original frame was optimized to obtain a new frame.The new frame of the dump truck underwent secondary static analysis and modal analysis,and it was found that the weight of the new frame decreased by 41.03 kg,successfully reducing the weight of the frame by 4.38%,improving the vehicle's handling and stability,and extending its service life.展开更多
Improvement of the detection ability of quantum entanglement is one of the essential tasks in quantum computing and quantum information.Finite tight frames play a fundamental role in a wide variety of areas and,genera...Improvement of the detection ability of quantum entanglement is one of the essential tasks in quantum computing and quantum information.Finite tight frames play a fundamental role in a wide variety of areas and,generally,each application requires a specific class of frames and is closely related to quantum measurement.It is worth noting that a maximal set of complex equiangular vectors is closely related to a symmetric informationally complete measurement.Hence,our goal in this work is to propose a series of separability criteria assigned to a finite tight frame and some well-known inequalities in different quantum systems,respectively.In addition,some tighter criteria to detect entanglement for many-body quantum states are presented in arbitrary dimensions.Finally,the effectiveness of the proposed entanglement detection criteria is illustrated through some detailed examples.展开更多
With the development of modern society,people put forward higher requirements for building safety,which makes the construction project face new challenges.Reinforced concrete frame structure as a common engineering ty...With the development of modern society,people put forward higher requirements for building safety,which makes the construction project face new challenges.Reinforced concrete frame structure as a common engineering type,although the construction technology has been relatively mature,but its earthquake collapse ability still needs to be strengthened.This paper analyzes the specific factors that affect the seismic collapse ability of reinforced concrete frame structure,summarizes the previous research results,and puts forward innovative application of fiber-reinforced polymer(FRP)composite materials,play the role of smart materials,improve the isolation and energy dissipation devices,etc.,to promote the continuous optimization of reinforced concrete frame structure design,and show better seismic performance.展开更多
A relationship was discovered between the amplification factor and the number of load increments that are needed to limit the relative error to one percent in second-order elastic analyses with a predictor-corrector s...A relationship was discovered between the amplification factor and the number of load increments that are needed to limit the relative error to one percent in second-order elastic analyses with a predictor-corrector solution scheme.Previous research by the authors proposed a design equation to determine the required minimum number of load increments based on an evaluation of the elastic critical buckling load ratio.Further research has shown that an approximate amplification factor equation that is based on the B2 multiplier equation produces similar results when the amplification factor is less than approximately four.Eleven moment frames are used to verify the use of the new approximate amplification factor in the proposed design equation.展开更多
Based on the Etihad Railway Station Project,this study selects a single-span frame bridge with a clear span of 7.3 meters as the research object.A comprehensive structural design process was conducted following the AR...Based on the Etihad Railway Station Project,this study selects a single-span frame bridge with a clear span of 7.3 meters as the research object.A comprehensive structural design process was conducted following the AREMA(2023),Manual for Railway Engineering-Volume 2-Structures,with systematic comparisons of techno-economic differences between the Chinese and American codes through recalculation verification and equivalent-precision design methods.The findings reveal:Recalculation using the Chinese code for identical structural dimensions and reinforcement layouts demonstrates that AREMA code exhibits greater conservatism in both strength requirements and crack control;Under equivalent precision design principles,the Chinese code solution reduces reinforcement by 4.128 t tons and a 19.5%reduction in reinforcement at critical sections compared to the AREMA code,indicating slightly reduced economic efficiency of the AREMA code.This research provides quantitative references for standardized design and specification integration in cross-border railway engineering projects.展开更多
In view of the demand for intelligent upgrading of quartz crucible manufacturing equipment,this study proposes a design scheme of large-scale quartz crucible feeding frame system with innovative structure,and analyzes...In view of the demand for intelligent upgrading of quartz crucible manufacturing equipment,this study proposes a design scheme of large-scale quartz crucible feeding frame system with innovative structure,and analyzes the vibration characteristics of this structure in view of the large vibration and instability during operation.In order to study the relationship between the operating vibration and the natural frequency and avoid resonance,the calculated mode was analyzed via ANSYS Workbench,and the experimental mode results were obtained by using percussion test and compared with the calculated mode.It is concluded that the natural frequencies of the first six orders of the large quartz crucible feeding frame are between 5.13 and 23.29,and the main deformation is distributed at the end of the turning mechanism.The analysis results show that the first-order natural frequency of the system has a safety margin of 1.55 times comparing with the working frequency of the drive motor(12 Hz),which effectively avoids the risk of resonance.The feeding frame adopts a double-column truss composite structure,and the layout of the specially designed stiffener network and high-precision guide rails ensures the lightweight structure and significantly improves the dynamic stability of the system.The practical effect of the large-scale quartz crucible feeding frame shows that the structural design is successful,and has reference significance for the structural design of the same type of automatic manufacturing equipment.展开更多
High-voltage electrical post equipment is generally installed on steel supports,which amplifies the seismic inputs and degrades the seismic performance of equipment.This study proposed a variable cross-section damped ...High-voltage electrical post equipment is generally installed on steel supports,which amplifies the seismic inputs and degrades the seismic performance of equipment.This study proposed a variable cross-section damped steel support frame(VCDFS)with viscous dampers to reduce seismic responses of both tall and low-rise electrical equipment.The VCDFS contains a trapezoidal damper layer to generate rocking motions,enabling the diagonal viscous dampers to dissipate seismic inputs.A theoretical model of post equipment with VCDFS is established,and an optimal design procedure is proposed.The analysis shows that the remaining static stiffness ratio λ_(k) is the key parameter that determines the effectiveness of the VCDFS.The VCDFS reduces the average displacement and stress response of a post insulator by 39.4%and 44.6%,respectively,together with a significant decrease in the dynamic amplification factor.Therefore,it is recommended to use the VCDFS instead of the conventional latticed-steel frame in earthquake zones.展开更多
Jiangsu Niupai Machinery&Elecronics Co,ltd.is National Specialized and New"Little Giant"Enterprise,National High&New Technological Enterprise,Jiangsu Provincial Research Center of Loom Shedding Engin...Jiangsu Niupai Machinery&Elecronics Co,ltd.is National Specialized and New"Little Giant"Enterprise,National High&New Technological Enterprise,Jiangsu Provincial Research Center of Loom Shedding Engineering Technology and Jiangsu Provincial Enterprise Technology Center.The company has obtained SGS-certified ISO9001 quality management system,a globally recognized standard.Niupai specializes in the R&D and manufacturing of cam shedding device,dobby shedding device,jacquard shedding device and heald frames for water-jet looms,air-jet looms as well as rapier looms.展开更多
Frame blades were used to replace traditional propeller blades to enhance the leaching step efficiency of Becher process.A combined approach of leaching,electrochemical experiments,and numerical simulations was employ...Frame blades were used to replace traditional propeller blades to enhance the leaching step efficiency of Becher process.A combined approach of leaching,electrochemical experiments,and numerical simulations was employed.Results demonstrate a significant improvement in leaching efficiency using frame blades compared to propellers,reducing reaction time from 15 to 10 h.Even at a stirring speed of 300 r/min,frame blades perform better than propellers at 500 r/min.Kinetics analysis indicates that the leaching process is controlled by surface chemical reactions.CFD-PBM simulations reveal that frame blades at 300 r/min generate larger bubbles and higher turbulent kinetic energy than propeller blades at 500 r/min.Frame blades enhance leaching efficiency by refining bubble size to improve oxygen mass transfer and by increasing turbulent kinetic energy for better mixing.展开更多
To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force...To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force distribution,deformation development,and crack propagation characteristics of a framed anti-sliding structure(FAS)under landslide thrust up to the point of failure.Results show that the maximum bending moment and its increase rate in the fore pile are greater than those in the rear pile,with the maximum bending moment of the fore pile approximately 1.1 times that of the rear pile.When the FAS fails,the displacement at the top of the fore pile is significantly greater,about 1.27 times that of the rear pile in the experiment.Major cracks develop at locations corresponding to the peak bending moments.Small transverse cracks initially appear on the upper surface at the intersection between the primary beam and rear pile and then spread to the side of the structure.At the failure stage,major cracks are observed at the pil-beam intersections and near the anchor points.Strengthening flexural stiffness at intersections where major cracks occur can improve the overall thrust-deformation coordination of the FAS,thereby maximizing its performance.展开更多
Euler Pole Parameters(EPPs)were estimated for the new plate-fixed North American Terrestrial Reference Frame of 2022(NATRF2022)based on the spherical model of Earth using different sets of continuously operating GPS(c...Euler Pole Parameters(EPPs)were estimated for the new plate-fixed North American Terrestrial Reference Frame of 2022(NATRF2022)based on the spherical model of Earth using different sets of continuously operating GPS(cGPS)station velocities.Two objectives were considered in this research:(1)the possibility of using the cGPS stations located in the areas affected by the Glacial Isostatic Adjustment(GIA),and(2)minimizing the reference frame velocities across the entire continent for conventional uses such as surveying and mapping.A key consideration in this analysis is accounting for the impact of the ongoing GIA on the horizontal velocities.The predicted horizontal velocities from the ICE-6G model were used to remove the GIA effect from the velocity field to mitigate such biases.As a proof of concept,different data sets from a large set of cGPS station velocities were selected,and EPPs were estimated for all these sets of stations with and without removing the GIA effect and estimating or not estimating the Plate Translation Rate(PTR).Considering the WRMS as the criterion for showing goodness of fit,the results show that accounting for the GIA effect reduces the NATRF2022 velocities.Using the same velocity dataset,the PTR was estimated along with the conventional Euler's rotation parameters,and it was shown that estimating the PTR term can further reduce the NATRF2022 velocities.展开更多
The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significan...The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significant contributions to the foundational aspects of the research warranted recognition,and he has now been added as a co-author.展开更多
基金Supported by the Short-wave Infrared Camera Systems(B025F40622024)。
文摘The accuracy of spot centroid positioning has a significant impact on the tracking accuracy of the system and the stability of the laser link construction.In satellite laser communication systems,the use of short-wave infrared wavelengths as beacon light can reduce atmospheric absorption and signal attenuation.However,there are strong non-uniformity and blind pixels in the short-wave infrared image,which makes the image distorted and leads to the decrease of spot centroid positioning accuracy.Therefore,the high-precision localization of the spot centroid of the short-wave infrared images is of great research significance.A high-precision spot centroid positioning model for short-wave infrared is proposed to correct for non-uniformity and blind pixels in short-wave infrared images and quantify the localization errors caused by the two,further model-based localization error simulations are performed,and a novel spot centroid positioning payload for satellite laser communications has been designed using the latest 640×512 planar array InGaAs shortwave infrared detector.The experimental results show that the non-uniformity of the corrected image is reduced from 7%to 0.6%,the blind pixels rejection rate reaches 100%,the frame rate can be up to 2000 Hz,and the spot centroid localization accuracy is as high as 0.1 pixel point,which realizes high-precision spot centroid localization of high-frame-frequency short-wave infrared images.
文摘Stepping out of Danyang Railway Station,the large sign reading“China Danyang Optical City”immediately comes into view across the road.Inside the bustling marketplace,a dazzling array of eyeglass frames and lenses is neatly displayed in rows of shops,attracting consumers from across the country.
基金supported by the National Key R&D Program of China,Grant No.2020YFA0712700the National Natural Science Foundation of China‘Mathematical Basic Theory of Quantum Computing’special project,Grant No.12341103。
文摘We connect magic(non-stabilizer)states,symmetric informationally complete positive operator valued measures(SIC-POVMs),and mutually unbiased bases(MUBs)in the context of group frames,and study their interplay.Magic states are quantum resources in the stabilizer formalism of quantum computation.SIC-POVMs and MUBs are fundamental structures in quantum information theory with many applications in quantum foundations,quantum state tomography,and quantum cryptography,etc.In this work,we study group frames constructed from some prominent magic states,and further investigate their applications.Our method exploits the orbit of discrete Heisenberg-Weyl group acting on an initial fiducial state.We quantify the distance of the group frames from SIC-POVMs and MUBs,respectively.As a simple corollary,we reproduce a complete family of MUBs of any prime dimensional system by introducing the concept of MUB fiducial states,analogous to the well-known SIC-POVM fiducial states.We present an intuitive and direct construction of MUB fiducial states via quantum T-gates,and demonstrate that for the qubit system,there are twelve MUB fiducial states,which coincide with the H-type magic states.We compare MUB fiducial states and SIC-POVM fiducial states from the perspective of magic resource for stabilizer quantum computation.We further pose the challenging issue of identifying all MUB fiducial states in general dimensions.
基金supported in part by the project is supported partly by National Key Research and Development Program of China(no.2022YFB2503504)Chongqing Technology Innovation and Application Development Project(no.CSTB2022TIAD-DEX0011)China Scholarship Council.
文摘This study presents the development of a Magnesium Alloy Seat Frame(MASF),supported by case studies from automotive original equipment manufacturers.The process covers integrated design,simulation,manufacturing,and testing,aiming to boost industry confidence in Mg alloy applications.A novel structural design is developed that integrates the headrest with the backrest,achieving a balance between lightweight performance and safety.Structural optimization is guided by stress–strain simulations under diverse conditions within a complete forward development process.Casting simulations are conducted to analyze process characteristics,resulting in a verified MASF yield rate exceeding 90%.The final 9.88 kg MASF represents a 24.6%(3.23 kg)weight reduction versus a steel seat.This research contributes to advancements in defect control technology for large die casting magnesium alloy parts and has broad implications for their application in automotive manufacturing.
文摘With the rapid growth of China's economic strength,the demand and market share are also constantly increasing.The number ofcars is rapidly increasing,and a large amount of fuel is consumed as a result.The massive release of vehicle exhaust seriously damages the natural environment,and the environmental crisis is becoming increasingly serious.This article follows the principles of improving fuel efficiency,reducing emissions,andenhancing vehicle performance.Using NX 12.0 software,a three-dimensional model of a certain type of dump truck frame is constructed based on actual parameters.ANSYS Workbench is used to simplify the geometric model,mesh division,and material definition,and a finite element model is constructed.Obtain the structural performance and natural vibration characteristics of the original chassis under four typical working conditions:bending,torsion,lifting,and unloading,through static analysis and modal analysis.On this basis,the dimensions of the components that bear less load on the original frame were optimized,and the topology of the second crossbeam and rear end corner of the subframe that bear less load on the original frame was optimized to obtain a new frame.The new frame of the dump truck underwent secondary static analysis and modal analysis,and it was found that the weight of the new frame decreased by 41.03 kg,successfully reducing the weight of the frame by 4.38%,improving the vehicle's handling and stability,and extending its service life.
基金supported by the Natural Science Foundation of Sichuan Province(Grant No.25QNJJ4066)。
文摘Improvement of the detection ability of quantum entanglement is one of the essential tasks in quantum computing and quantum information.Finite tight frames play a fundamental role in a wide variety of areas and,generally,each application requires a specific class of frames and is closely related to quantum measurement.It is worth noting that a maximal set of complex equiangular vectors is closely related to a symmetric informationally complete measurement.Hence,our goal in this work is to propose a series of separability criteria assigned to a finite tight frame and some well-known inequalities in different quantum systems,respectively.In addition,some tighter criteria to detect entanglement for many-body quantum states are presented in arbitrary dimensions.Finally,the effectiveness of the proposed entanglement detection criteria is illustrated through some detailed examples.
文摘With the development of modern society,people put forward higher requirements for building safety,which makes the construction project face new challenges.Reinforced concrete frame structure as a common engineering type,although the construction technology has been relatively mature,but its earthquake collapse ability still needs to be strengthened.This paper analyzes the specific factors that affect the seismic collapse ability of reinforced concrete frame structure,summarizes the previous research results,and puts forward innovative application of fiber-reinforced polymer(FRP)composite materials,play the role of smart materials,improve the isolation and energy dissipation devices,etc.,to promote the continuous optimization of reinforced concrete frame structure design,and show better seismic performance.
文摘A relationship was discovered between the amplification factor and the number of load increments that are needed to limit the relative error to one percent in second-order elastic analyses with a predictor-corrector solution scheme.Previous research by the authors proposed a design equation to determine the required minimum number of load increments based on an evaluation of the elastic critical buckling load ratio.Further research has shown that an approximate amplification factor equation that is based on the B2 multiplier equation produces similar results when the amplification factor is less than approximately four.Eleven moment frames are used to verify the use of the new approximate amplification factor in the proposed design equation.
文摘Based on the Etihad Railway Station Project,this study selects a single-span frame bridge with a clear span of 7.3 meters as the research object.A comprehensive structural design process was conducted following the AREMA(2023),Manual for Railway Engineering-Volume 2-Structures,with systematic comparisons of techno-economic differences between the Chinese and American codes through recalculation verification and equivalent-precision design methods.The findings reveal:Recalculation using the Chinese code for identical structural dimensions and reinforcement layouts demonstrates that AREMA code exhibits greater conservatism in both strength requirements and crack control;Under equivalent precision design principles,the Chinese code solution reduces reinforcement by 4.128 t tons and a 19.5%reduction in reinforcement at critical sections compared to the AREMA code,indicating slightly reduced economic efficiency of the AREMA code.This research provides quantitative references for standardized design and specification integration in cross-border railway engineering projects.
文摘In view of the demand for intelligent upgrading of quartz crucible manufacturing equipment,this study proposes a design scheme of large-scale quartz crucible feeding frame system with innovative structure,and analyzes the vibration characteristics of this structure in view of the large vibration and instability during operation.In order to study the relationship between the operating vibration and the natural frequency and avoid resonance,the calculated mode was analyzed via ANSYS Workbench,and the experimental mode results were obtained by using percussion test and compared with the calculated mode.It is concluded that the natural frequencies of the first six orders of the large quartz crucible feeding frame are between 5.13 and 23.29,and the main deformation is distributed at the end of the turning mechanism.The analysis results show that the first-order natural frequency of the system has a safety margin of 1.55 times comparing with the working frequency of the drive motor(12 Hz),which effectively avoids the risk of resonance.The feeding frame adopts a double-column truss composite structure,and the layout of the specially designed stiffener network and high-precision guide rails ensures the lightweight structure and significantly improves the dynamic stability of the system.The practical effect of the large-scale quartz crucible feeding frame shows that the structural design is successful,and has reference significance for the structural design of the same type of automatic manufacturing equipment.
基金Guangdong Basic and Applied Basic Research Foundation under Grant Nos.2022A1515110561 and 2023A1515010072Natural Science Foundation of China under Grant Nos.52308488 and 52378499。
文摘High-voltage electrical post equipment is generally installed on steel supports,which amplifies the seismic inputs and degrades the seismic performance of equipment.This study proposed a variable cross-section damped steel support frame(VCDFS)with viscous dampers to reduce seismic responses of both tall and low-rise electrical equipment.The VCDFS contains a trapezoidal damper layer to generate rocking motions,enabling the diagonal viscous dampers to dissipate seismic inputs.A theoretical model of post equipment with VCDFS is established,and an optimal design procedure is proposed.The analysis shows that the remaining static stiffness ratio λ_(k) is the key parameter that determines the effectiveness of the VCDFS.The VCDFS reduces the average displacement and stress response of a post insulator by 39.4%and 44.6%,respectively,together with a significant decrease in the dynamic amplification factor.Therefore,it is recommended to use the VCDFS instead of the conventional latticed-steel frame in earthquake zones.
文摘Jiangsu Niupai Machinery&Elecronics Co,ltd.is National Specialized and New"Little Giant"Enterprise,National High&New Technological Enterprise,Jiangsu Provincial Research Center of Loom Shedding Engineering Technology and Jiangsu Provincial Enterprise Technology Center.The company has obtained SGS-certified ISO9001 quality management system,a globally recognized standard.Niupai specializes in the R&D and manufacturing of cam shedding device,dobby shedding device,jacquard shedding device and heald frames for water-jet looms,air-jet looms as well as rapier looms.
基金supported by the National Natural Science Foundation of China(No.U1908225)the Cross-Integration and Collaborative Development Project of Northeastern University,China(No.N2225013).
文摘Frame blades were used to replace traditional propeller blades to enhance the leaching step efficiency of Becher process.A combined approach of leaching,electrochemical experiments,and numerical simulations was employed.Results demonstrate a significant improvement in leaching efficiency using frame blades compared to propellers,reducing reaction time from 15 to 10 h.Even at a stirring speed of 300 r/min,frame blades perform better than propellers at 500 r/min.Kinetics analysis indicates that the leaching process is controlled by surface chemical reactions.CFD-PBM simulations reveal that frame blades at 300 r/min generate larger bubbles and higher turbulent kinetic energy than propeller blades at 500 r/min.Frame blades enhance leaching efficiency by refining bubble size to improve oxygen mass transfer and by increasing turbulent kinetic energy for better mixing.
基金The National Natural Science Foundation of China(No.52078427).
文摘To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force distribution,deformation development,and crack propagation characteristics of a framed anti-sliding structure(FAS)under landslide thrust up to the point of failure.Results show that the maximum bending moment and its increase rate in the fore pile are greater than those in the rear pile,with the maximum bending moment of the fore pile approximately 1.1 times that of the rear pile.When the FAS fails,the displacement at the top of the fore pile is significantly greater,about 1.27 times that of the rear pile in the experiment.Major cracks develop at locations corresponding to the peak bending moments.Small transverse cracks initially appear on the upper surface at the intersection between the primary beam and rear pile and then spread to the side of the structure.At the failure stage,major cracks are observed at the pil-beam intersections and near the anchor points.Strengthening flexural stiffness at intersections where major cracks occur can improve the overall thrust-deformation coordination of the FAS,thereby maximizing its performance.
文摘Euler Pole Parameters(EPPs)were estimated for the new plate-fixed North American Terrestrial Reference Frame of 2022(NATRF2022)based on the spherical model of Earth using different sets of continuously operating GPS(cGPS)station velocities.Two objectives were considered in this research:(1)the possibility of using the cGPS stations located in the areas affected by the Glacial Isostatic Adjustment(GIA),and(2)minimizing the reference frame velocities across the entire continent for conventional uses such as surveying and mapping.A key consideration in this analysis is accounting for the impact of the ongoing GIA on the horizontal velocities.The predicted horizontal velocities from the ICE-6G model were used to remove the GIA effect from the velocity field to mitigate such biases.As a proof of concept,different data sets from a large set of cGPS station velocities were selected,and EPPs were estimated for all these sets of stations with and without removing the GIA effect and estimating or not estimating the Plate Translation Rate(PTR).Considering the WRMS as the criterion for showing goodness of fit,the results show that accounting for the GIA effect reduces the NATRF2022 velocities.Using the same velocity dataset,the PTR was estimated along with the conventional Euler's rotation parameters,and it was shown that estimating the PTR term can further reduce the NATRF2022 velocities.
文摘The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significant contributions to the foundational aspects of the research warranted recognition,and he has now been added as a co-author.