期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于小波包分析和K-OPLS的集成方法在颗粒粒径分布检测中的应用 被引量:3
1
作者 陈敏 贺益君 +1 位作者 王靖岱 阳永荣 《化工学报》 EI CAS CSCD 北大核心 2010年第6期1349-1356,共8页
颗粒粒径分布的实时在线检测对于调控气固流化床中颗粒的流化特性具有重要意义。基于混料均匀设计法安排实验,以声发射(AE)技术为检测手段,结合小波包分析,提出采用K-OPLS方法构建颗粒粒径分布的声信号预测模型,定量描述小波包能量特征... 颗粒粒径分布的实时在线检测对于调控气固流化床中颗粒的流化特性具有重要意义。基于混料均匀设计法安排实验,以声发射(AE)技术为检测手段,结合小波包分析,提出采用K-OPLS方法构建颗粒粒径分布的声信号预测模型,定量描述小波包能量特征与颗粒粒径分布的非线性变化规律。实验结果显示,留一交叉验证法的均方根误差(RMSE)仅为0.063,表明基于K-OPLS的颗粒粒径分布声信号预测模型能准确测量气固流化床中颗粒的粒径分布,具有良好的工业应用前景。 展开更多
关键词 气固流化床 颗粒粒径分布 声发射技术 小波包分析 k-opls
在线阅读 下载PDF
Application in soft sensing modeling of chemical process based on K-OPLS method
2
作者 LI Jun LI Kai 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期17-27,共11页
Aiming at the problem of soft sensing modeling for chemical process with strong nonlinearity and complexity,a soft sensing modeling method based on kernel-based orthogonal projections to latent structures(K-OPLS)is pr... Aiming at the problem of soft sensing modeling for chemical process with strong nonlinearity and complexity,a soft sensing modeling method based on kernel-based orthogonal projections to latent structures(K-OPLS)is proposed.Orthogonal projections to latent structures(O-PLS)is a general linear multi-variable data modeling method.It can eliminate systematic variations from descriptive variables(input)that are orthogonal to response variables(output).In the framework of O-PLS model,K-OPLS method maps descriptive variables to high-dimensional feature space by using“kernel technique”to calculate predictive components and response-orthogonal components in the model.Therefore,the K-OPLS method gives the non-linear relationship between the descriptor and the response variables,which improves the performance of the model and enhances the interpretability of the model to a certain extent.To verify the validity of K-OPLS method,it was applied to soft sensing modeling of component content of debutane tower base butane(C4),the quality index of the key product output for industrial fluidized catalytic cracking unit(FCCU)and H 2S and SO 2 concentration in sulfur recovery unit(SRU).Compared with support vector machines(SVM),least-squares support-vector machine(LS-SVM),support vector machine with principal component analysis(PCA-SVM),extreme learning machine(ELM),kernel based extreme learning machine(KELM)and kernel based extreme learning machine with principal component analysis(PCA-KELM)methods under the same conditions,the experimental results show that the K-OPLS method has superior modeling accuracy and good model generalization ability. 展开更多
关键词 kernel method orthogonal projection to latent structures(k-opls) soft sensing chemical process
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部