期刊文献+
共找到91篇文章
< 1 2 5 >
每页显示 20 50 100
Real-Time Spreading Thickness Monitoring of High-core Rockfill Dam Based on K-nearest Neighbor Algorithm 被引量:4
1
作者 Denghua Zhong Rongxiang Du +2 位作者 Bo Cui Binping Wu Tao Guan 《Transactions of Tianjin University》 EI CAS 2018年第3期282-289,共8页
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and... During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface. 展开更多
关键词 Core rockfill dam Dam storehouse surface construction Spreading thickness k-nearest neighbor algorithm Real-time monitor
在线阅读 下载PDF
Wireless Communication Signal Strength Prediction Method Based on the K-nearest Neighbor Algorithm
2
作者 Zhao Chen Ning Xiong +6 位作者 Yujue Wang Yong Ding Hengkui Xiang Chenjun Tang Lingang Liu Xiuqing Zou Decun Luo 《国际计算机前沿大会会议论文集》 2019年第1期238-240,共3页
Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically ... Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy. 展开更多
关键词 INTERFERENCE protection k-nearest NEIGHBOR algorithm NON-PARAMETRIC KERNEL regression SIGNAL field STRENGTH
在线阅读 下载PDF
A Memetic Algorithm With Competition for the Capacitated Green Vehicle Routing Problem 被引量:9
3
作者 Ling Wang Jiawen Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期516-526,共11页
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t... In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP. 展开更多
关键词 Capacitated green VEHICLE ROUTING problem(CGVRP) COMPETITION k-nearest neighbor(kNN) local INTENSIFICATION memetic algorithm
在线阅读 下载PDF
Enhancing Firefly Algorithm with Best Neighbor Guided Search Strategy 被引量:2
4
作者 WU Shuangke WU Zhijian PENG Hu 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第6期524-536,共13页
Firefly algorithm(FA)is a recently-proposed swarm intelligence technique.It has shown good performance in solving various optimization problems.According to the standard firefly algorithm and most of its variants,a fi... Firefly algorithm(FA)is a recently-proposed swarm intelligence technique.It has shown good performance in solving various optimization problems.According to the standard firefly algorithm and most of its variants,a firefly migrates to every other brighter firefly in each iteration.However,this method leads to defects of oscillations of positions,which hampers the convergence to the optimum.To address these problems and enhance the performance of FA,we propose a new firefly algorithm,which is called the Best Neighbor Firefly Algorithm(BNFA).It employs the best neighbor guided strategy,where each firefly is attracted to the best firefly among some randomly chosen neighbors,thus reducing the firefly oscillations in every attraction-induced migration stage,while increasing the probability of the guidance a new better direction.Moreover,it selects neighbors randomly to prevent the firefly form being trapped into a local optimum.Extensive experiments are conducted to find out the optimal parameter settings.To verify the performance of BNFA,13 classical benchmark functions are tested.Results show that BNFA outperforms the standard FA and other recently proposed modified FAs. 展开更多
关键词 FIREFLY algorithm(FA) global optimization RANDOM neighbour exploration and EXPLOITATION
原文传递
An Improved Whale Optimization Algorithm for Feature Selection 被引量:4
5
作者 Wenyan Guo Ting Liu +1 位作者 Fang Dai Peng Xu 《Computers, Materials & Continua》 SCIE EI 2020年第1期337-354,共18页
Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in term... Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space. 展开更多
关键词 Whale optimization algorithm Filter and Wrapper model k-nearest neighbor method Adaptive neighborhood hybrid mutation
在线阅读 下载PDF
Research on Initialization on EM Algorithm Based on Gaussian Mixture Model 被引量:4
6
作者 Ye Li Yiyan Chen 《Journal of Applied Mathematics and Physics》 2018年第1期11-17,共7页
The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effectiv... The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm. 展开更多
关键词 EM algorithm GAUSSIAN MIXTURE Model k-nearest NEIGHBOR K-MEANS algorithm INITIALIZATION
在线阅读 下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
7
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
在线阅读 下载PDF
An Optimization System for Intent Recognition Based on an Improved KNN Algorithm with Minimal Feature Set for Powered Knee Prosthesis
8
作者 Yao Zhang Xu Wang +6 位作者 Haohua Xiu Lei Ren Yang Han Yongxin Ma Wei Chen Guowu Wei Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2619-2632,共14页
In this article,a new optimization system that uses few features to recognize locomotion with high classification accuracy is proposed.The optimization system consists of three parts.First,the features of the mixed me... In this article,a new optimization system that uses few features to recognize locomotion with high classification accuracy is proposed.The optimization system consists of three parts.First,the features of the mixed mechanical signal data are extracted from each analysis window of 200 ms after each foot contact event.Then,the Binary version of the hybrid Gray Wolf Optimization and Particle Swarm Optimization(BGWOPSO)algorithm is used to select features.And,the selected features are optimized and assigned different weights by the Biogeography-Based Optimization(BBO)algorithm.Finally,an improved K-Nearest Neighbor(KNN)classifier is employed for intention recognition.This classifier has the advantages of high accuracy,few parameters as well as low memory burden.Based on data from eight patients with transfemoral amputations,the optimization system is evaluated.The numerical results indicate that the proposed model can recognize nine daily locomotion modes(i.e.,low-,mid-,and fast-speed level-ground walking,ramp ascent/decent,stair ascent/descent,and sit/stand)by only seven features,with an accuracy of 96.66%±0.68%.As for real-time prediction on a powered knee prosthesis,the shortest prediction time is only 9.8 ms.These promising results reveal the potential of intention recognition based on the proposed system for high-level control of the prosthetic knee. 展开更多
关键词 Intent recognition k-nearest Neighbor algorithm Powered knee prosthesis Locomotion mode classification
在线阅读 下载PDF
Condition Monitoring of Roller Bearing by K-star Classifier andK-nearest Neighborhood Classifier Using Sound Signal
9
作者 Rahul Kumar Sharma V.Sugumaran +1 位作者 Hemantha Kumar M.Amarnath 《Structural Durability & Health Monitoring》 EI 2017年第1期1-17,共17页
Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is v... Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is very important. In present study soundsignal is used to continuously monitor bearing health as sound signals of rotatingmachineries carry dynamic information of components. There are numerous studies inliterature that are reporting superiority of vibration signal of bearing fault diagnosis.However, there are very few studies done using sound signal. The cost associated withcondition monitoring using sound signal (Microphone) is less than the cost of transducerused to acquire vibration signal (Accelerometer). This paper employs sound signal forcondition monitoring of roller bearing by K-star classifier and k-nearest neighborhoodclassifier. The statistical feature extraction is performed from acquired sound signals. Thentwo-layer feature selection is done using J48 decision tree algorithm and random treealgorithm. These selected features were classified using K-star classifier and k-nearestneighborhood classifier and parametric optimization is performed to achieve the maximumclassification accuracy. The classification results for both K-star classifier and k-nearestneighborhood classifier for condition monitoring of roller bearing using sound signals werecompared. 展开更多
关键词 K-star k-nearest neighborhood K-NN machine learning approach conditionmonitoring fault diagnosis roller bearing decision tree algorithm J-48 random treealgorithm decision making two-layer feature selection sound signal statistical features
在线阅读 下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
10
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square Method Robust Least Square Method Synthetic Data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization algorithm k-nearest Neighbor and Mean imputation
在线阅读 下载PDF
基于复近似信息传递算法和K近邻算法的DOA估计方法
11
作者 田雨晴 吕香茹 王鹏 《中北大学学报(自然科学版)》 2025年第5期651-660,共10页
针对传统算法在低信噪比、小快拍、多信源等情况下波达方向(Direction of Arrival,DOA)估计精度低的问题,提出了一种基于多测量向量模型的复近似信息传递算法(MMV Complex Approximate Message Passing,MCAMP)和K近邻算法(K-Nearest Nei... 针对传统算法在低信噪比、小快拍、多信源等情况下波达方向(Direction of Arrival,DOA)估计精度低的问题,提出了一种基于多测量向量模型的复近似信息传递算法(MMV Complex Approximate Message Passing,MCAMP)和K近邻算法(K-Nearest Neighbour,KNN)的矢量水听器阵列DOA估计方法。首先,对空域进行等角度划分,构造出超完备阵列流形矩阵,建立基于稀疏表示的多快拍DOA估计模型。然后,采用MCAMP算法进行初步估计,保存估计结果的峰值数据,使用KNN算法对此数据进行聚类。最后,使用内积匹配准则选择每类信号值最大的原子,从而得到DOA估计值。仿真实验结果表明,与传统算法相比,该方法具有抗噪能力强,估计精度高等优点。 展开更多
关键词 DOA估计 压缩感知 复近似信息传递算法 K近邻算法 矢量水听器
在线阅读 下载PDF
Predictive modeling of geophysical anomalies in the metasediments of Bugaji area, part of Malumfashi Schist Belt, North-Western Nigeria
12
作者 Abdullah Musa Ali Mubarak Muhammad 《Earth Energy Science》 2025年第3期242-255,共14页
The Bugaji area,situated within the Malumfashi Schist Belt of northwestern Nigeria,primarily consists of metasediments that include quartzo-feldspathic and pelitic schists,and gneiss.However,this area poses a challeng... The Bugaji area,situated within the Malumfashi Schist Belt of northwestern Nigeria,primarily consists of metasediments that include quartzo-feldspathic and pelitic schists,and gneiss.However,this area poses a challenge in mineral exploration due to limited outcrop exposures and complex subsurface structures.Hence,there is the need for exhaustive geophysical studies and supplementary approaches to accurately delineate lithologies and structures.Therefore,this study combines field mapping and geophysical techniques with artificial intelligence(AI)modeling,comprising supervised learning algorithms,to overcome this exploration problem.Utilizing sophisticated AI techniques,specifically the Random Forest Classifier and K-Nearest Neighbor algorithms,geophysical data(gravity,magnetic,and radiometric measurements)were processed and analyzed.The AI model effectively filled data gaps,and identified potential lithological variations and prospective mineralization zones based on geophysical signatures derived from the integrated dataset.The AI modeling's commendable average accuracy of 85%in predicting values underscores its efficacy in interpreting geophysical data.The success of random forest in the geological mapping process can be attributed to its ability to handle high-dimensional data,capture non-linear relationships between input variables,and mitigate overfitting.The integrated approach enhanced our understanding of subsurface geology in the Bugaji area. 展开更多
关键词 METASEDIMENTS Geophysical anomalies Bugaji area Gravity Magnetic and Radiometric measurements Random Forest Classifier and k-nearest Neighbor algorithms
在线阅读 下载PDF
一种基于近邻搜索的快速k-近邻分类算法 被引量:16
13
作者 王壮 胡卫东 +1 位作者 郁文贤 庄钊文 《系统工程与电子技术》 EI CSCD 北大核心 2002年第4期100-102,共3页
针对传统快速k 近邻分类算法的缺陷 ,提出了一种基于近邻搜索的快速k 近邻分类算法———超球搜索法。该方法通过对特征空间的预组织 ,使分类在以待分样本为中心的超球内进行 ,有效地缩小了搜索范围。实验结果表明 ,在相同识别率和k值... 针对传统快速k 近邻分类算法的缺陷 ,提出了一种基于近邻搜索的快速k 近邻分类算法———超球搜索法。该方法通过对特征空间的预组织 ,使分类在以待分样本为中心的超球内进行 ,有效地缩小了搜索范围。实验结果表明 ,在相同识别率和k值的情况下 ,超球搜索法的识别速度优于基本k 近邻法和传统快速k 近邻算法———及时终止法 。 展开更多
关键词 近邻搜索 快速κ-近邻分类算法 超球搜索法
在线阅读 下载PDF
一种基于信息增益的K-NN改进算法 被引量:9
14
作者 魏孝章 豆增发 《计算机工程与应用》 CSCD 北大核心 2007年第19期188-191,共4页
针对传统K-NN算法易受单个属性干扰和时间效率较低的问题,提出了利用信息增益和可拓关联度对其进行改进。通过计算属性的信息增益来确定属性的权重系数,根据权重系数将属性划分为关键属性、次要属性和无关属性,在计算欧氏距离时引入权... 针对传统K-NN算法易受单个属性干扰和时间效率较低的问题,提出了利用信息增益和可拓关联度对其进行改进。通过计算属性的信息增益来确定属性的权重系数,根据权重系数将属性划分为关键属性、次要属性和无关属性,在计算欧氏距离时引入权重系数,使各个属性的作用受其重要性的约束,有效地提高了K-NN算法的抗干扰能力和精确性。将属性空间划分为若干个子空间,利用可拓关联度将待测样本映射到某个子空间中,由这个子空间组成搜索空间,减少计算量,提高时间效率;测试结果表明,改进后的算法可行有效。 展开更多
关键词 K—NN算法 信息增益 信息熵 可拓关联度
在线阅读 下载PDF
一种基于信息增益的K-NN改进算法 被引量:5
15
作者 豆增发 王英强 王保保 《电子科技》 2006年第12期52-56,共5页
K-最近邻(K-nearestneighbor,简称KNN)算法是一种在人工智能领域如专家系统、数据挖掘、模式识别等方面广泛应用的算法。该算法简单有效,易于实现,但是其K值难以确定,而且分类结果易受单个属性干扰。文中提出了一种简单易行的K值确定方... K-最近邻(K-nearestneighbor,简称KNN)算法是一种在人工智能领域如专家系统、数据挖掘、模式识别等方面广泛应用的算法。该算法简单有效,易于实现,但是其K值难以确定,而且分类结果易受单个属性干扰。文中提出了一种简单易行的K值确定方法,并利用Quinlan信息增益理论,提出了基于信息增益的K-最近邻改进算法。通过实验证明,改进后的K-NN算法具有较强的抗干扰能力和较好的精确性。 展开更多
关键词 K-最近邻算法 信息增益 信息熵
在线阅读 下载PDF
一种混合局部搜索算法的遗传算法求解旅行商问题 被引量:8
16
作者 宗德才 王康康 《计算机应用与软件》 CSCD 2015年第3期266-270,305,共6页
针对遗传算法容易产生早熟现象以及局部寻优能力较差的缺点,提出一种求解旅行商问题的高效混合遗传算法。该算法首先用加权最近邻法产生初始种群,对种群中相同的个体,用K-近邻法产生新的个体代替相同的个体,然后淘汰适应性较差的个体,... 针对遗传算法容易产生早熟现象以及局部寻优能力较差的缺点,提出一种求解旅行商问题的高效混合遗传算法。该算法首先用加权最近邻法产生初始种群,对种群中相同的个体,用K-近邻法产生新的个体代替相同的个体,然后淘汰适应性较差的个体,用交叉操作产生新的个体,最后,对部分个体进行3-opt优化变异,对种群中优秀个体用改进的Lin-Kernighan算法进行优化。对TSPLIB中部分实例的仿真结果表明,所提出的混合局部搜索算法的改进遗传算法在求解TSP问题时可以高效地获得高质量的解。 展开更多
关键词 遗传算法 加权最近邻法 K-近邻法 Lin-Kernighan算法 3-opt算法 旅行商问题
在线阅读 下载PDF
基于多种机器学习方法填补大豆基因组缺失的比较研究 被引量:2
17
作者 于合龙 刘雨帆 +1 位作者 张继成 唐友 《大豆科学》 CAS CSCD 北大核心 2021年第1期122-129,共8页
为探索大豆基因组测序不同程度缺失数据的有效填补措施,提升数据分析综合能力,本研究以大豆株高与叶面积两组性状的基因组基因型数据为研究对象,进行5%、10%和20%不同缺失比例的人为数据缺失处理,分别运用K近邻算法、SoftImpute算法和... 为探索大豆基因组测序不同程度缺失数据的有效填补措施,提升数据分析综合能力,本研究以大豆株高与叶面积两组性状的基因组基因型数据为研究对象,进行5%、10%和20%不同缺失比例的人为数据缺失处理,分别运用K近邻算法、SoftImpute算法和随机森林算法3种机器学习方法对缺失数据进行填补,分析填补数据的准确性和性能。对原始数据和填补后的数据进行全基因组关联分析,分别对比填补后的数据和原始数据的分析效果。从准确率来看,随机森林算法填补的准确率最高;从运行时间上来看,SoftImpute算法的运行速度最快;运行内存方面,SoftImpute算法的运行内存最小,而当数据量达到10 000×1 000时,K近邻填补算法的运行内存最小。在不考虑运行时间和运行内存的因素,且对填补的准确率要求较高的情况下,随机森林算法的填补效果要优于K近邻填补算法和SoftImpute算法,若对运行时间要求较高且数据量较大时,则应选择SoftImpute算法,同种情况下若对运行内存要求较高时,可优先考虑K近邻填补算法。结果说明不同机器学习方法在不同缺失程度的填补需求下的适用性,可应用于大豆基因组数据缺失处理。 展开更多
关键词 大豆基因组缺失 K近邻算法 SoftImpute算法 随机森林算法 全基因组关联分析
原文传递
SVM-KNN分类器——一种提高SVM分类精度的新方法 被引量:135
18
作者 李蓉 叶世伟 史忠植 《电子学报》 EI CAS CSCD 北大核心 2002年第5期745-748,共4页
本文提出了一种将支持向量机分类和最近邻分类相结合的方法 ,形成了一种新的分类器 .首先对支持向量机进行分析可以看出它作为分类器实际相当于每类只选一个代表点的最近邻分类器 ,同时在对支持向量机分类时出错样本点的分布进行研究的... 本文提出了一种将支持向量机分类和最近邻分类相结合的方法 ,形成了一种新的分类器 .首先对支持向量机进行分析可以看出它作为分类器实际相当于每类只选一个代表点的最近邻分类器 ,同时在对支持向量机分类时出错样本点的分布进行研究的基础上 ,在分类阶段计算待识别样本和最优分类超平面的距离 ,如果距离差大于给定阈值直接应用支持向量机分类 ,否则代入以每类的所有的支持向量作为代表点的K近邻分类 .数值实验证明了使用支持向量机结合最近邻分类的分类器分类比单独使用支持向量机分类具有更高的分类准确率 。 展开更多
关键词 SVM-KNN分类器 SVM分类精度 支持向量机 最近邻分类 模式识别 人工智能
在线阅读 下载PDF
一种基于稀疏表示的WLAN室内定位算法 被引量:3
19
作者 曾伟 黄亮 《计算机应用与软件》 CSCD 北大核心 2014年第12期175-177,244,共4页
随着科技进步和人民生活水平的提高,越来越多的用户对定位技术需求变得日益迫切。基于WLAN的室内定位技术研究在此背景下应运而生,但是该技术容易受非视距离以及多径影响。而位置指纹算法有效地克服了上述缺点,并得到了广泛应用。提出... 随着科技进步和人民生活水平的提高,越来越多的用户对定位技术需求变得日益迫切。基于WLAN的室内定位技术研究在此背景下应运而生,但是该技术容易受非视距离以及多径影响。而位置指纹算法有效地克服了上述缺点,并得到了广泛应用。提出一种基于稀疏表示的WLAN室内定位算法,以解决位置指纹算法K近邻方法中参数选择问题、不能综合利用全局参考点信息问题,并对其进行了实验仿真。 展开更多
关键词 稀疏表示 室内定位 指纹算法 K近邻方法
在线阅读 下载PDF
一种求解TSP初始化种群问题的邻域法 被引量:6
20
作者 罗辞勇 卢斌 刘飞 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第11期1311-1315,共5页
针对遗传算法求解TSP问题时存在初始化种群敏感的问题,提出一种初始化种群的邻域法,在该方法中,从某个城市出发其下一站不是其最近城市,而在比最近城市稍远的邻域范围进行随机选取。邻域法既能提取局部优化路径特征信息,又具有多样性。... 针对遗传算法求解TSP问题时存在初始化种群敏感的问题,提出一种初始化种群的邻域法,在该方法中,从某个城市出发其下一站不是其最近城市,而在比最近城市稍远的邻域范围进行随机选取。邻域法既能提取局部优化路径特征信息,又具有多样性。用4个通用的TSPLIB标准实例进行实验验证。邻域法初始化种群相比随机法,4个实例的最优解平均改进值达到了46.3%,最优解的质量有较大改善。仿真实验结果验证了邻域法初始化种群的有效性。 展开更多
关键词 遗传算法 旅行商问题 初始种群 最近邻法 邻域法
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部