期刊文献+
共找到283,125篇文章
< 1 2 250 >
每页显示 20 50 100
Research on Parallel K-Medoids algorithm based on MapReduce
1
作者 Xianli QIN 《International Journal of Technology Management》 2015年第1期26-28,共3页
In order to solve the bottleneck problem of the traditional K-Medoids clustering algorithm facing to deal with massive data information at the time of memory capacity and processing speed of CPU, the paper proposed a ... In order to solve the bottleneck problem of the traditional K-Medoids clustering algorithm facing to deal with massive data information at the time of memory capacity and processing speed of CPU, the paper proposed a parallel algorithm MapReduce programming model based on the research of K-Medoids algorithm. This algorithm increase the computation granularity and reduces the communication cost ratio based on the MapReduce model. The experimental results show that the improved parallel algorithm compared with other algorithms, speedup and operation efficiency is greatly enhanced. 展开更多
关键词 k-medoids MAPREDUCE Parallel computing HADOOP
在线阅读 下载PDF
基于改进K-Medoids聚类算法的医院HRP系统设计 被引量:1
2
作者 张蕾 徐叶青 《自动化技术与应用》 2025年第12期142-146,188,共6页
为深入挖掘医院海量信息中有价值的信息,研究面向大型综合三甲医院C设计了医院资源规划系统,为推进智慧医院的转型需求,使用Tent混沌映射改进人工蜂群优化算法,并在此基础上优化K-中心点聚类算法。研究提出的算法平均准确率为93.76%。... 为深入挖掘医院海量信息中有价值的信息,研究面向大型综合三甲医院C设计了医院资源规划系统,为推进智慧医院的转型需求,使用Tent混沌映射改进人工蜂群优化算法,并在此基础上优化K-中心点聚类算法。研究提出的算法平均准确率为93.76%。在实际应用中,2023年收入预支出预算执行率分别为99.63%与99.04%。上述结果说明研究提出的医院资源规划系统具有优秀的性能,能显著提升实际应用中预算管理水平,有利于医院财务精细化管理的推进。 展开更多
关键词 改进k-medoids聚类算法 HRP系统 精细化管理 人工蜂群优化算法
在线阅读 下载PDF
基于改进MPE和K-medoids的变压器绕组松动故障诊断
3
作者 马宏忠 薛健侗 +2 位作者 倪一铭 万可力 迮恒鹏 《高压电器》 北大核心 2025年第9期73-80,共8页
为了更加有效地对变压器绕组松动故障进行诊断,针对变压器有载运行时的振动信号,提出了一种基于改进多尺度排列熵(MPE)和K-medoids的变压器绕组松动故障诊断方法。首先采用粒子群优化(PSO)的MPE算法对绕组不同状态下的变压器振动信号进... 为了更加有效地对变压器绕组松动故障进行诊断,针对变压器有载运行时的振动信号,提出了一种基于改进多尺度排列熵(MPE)和K-medoids的变压器绕组松动故障诊断方法。首先采用粒子群优化(PSO)的MPE算法对绕组不同状态下的变压器振动信号进行特征提取,以减少MPE算法中参数设置对故障类型识别精度的影响,然后通过K-medoids聚类算法诊断变压器绕组松动故障,以完成故障的分类识别。对某10 kV变压器的绕组松动故障模拟实验结果表明,绕组不同状态下变压器振动信号的MPE值经PSO参数优化后存在明显差异,诊断效果优于传统经验设置参数的MPE算法,且稳定性得到提高。 展开更多
关键词 变压器 绕组松动诊断 粒子群优化的MPE算法 特征提取 k-medoids算法
在线阅读 下载PDF
基于K-Medoids提取信道状态特征的无人机探测方法
4
作者 宋玲玉 潘鹏 刘天乐 《电信科学》 北大核心 2025年第1期75-87,共13页
对低空目标的有效管控是推动低空经济发展的关键。城市环境中强杂波和建筑物遮挡等因素使得传统雷达探测手段难以实现对低速无人机的有效监测。基于此,提出了一种无人机探测的新思路,即通过识别信道状态特征的变化来判断无人机是否出现... 对低空目标的有效管控是推动低空经济发展的关键。城市环境中强杂波和建筑物遮挡等因素使得传统雷达探测手段难以实现对低速无人机的有效监测。基于此,提出了一种无人机探测的新思路,即通过识别信道状态特征的变化来判断无人机是否出现在指定区域。该方法的核心在于利用城市中已广泛部署的移动基站等外辐射源,基于K-Medoids聚类算法捕捉无人机出现后对原有多径信道路径数量的影响,从而实现对无人机的感知。该方法不需要构建精确的参考信号,也不需要利用多普勒体制抑制强杂波。仿真结果表明,所提方法在1 km~2范围内能实现80%以上的检测概率,且随着范围缩小,检测概率能达到90%左右,因此能够在城市场景下有效探测低空慢速无人机。 展开更多
关键词 无人机 信道状态信息 外辐射源 k-medoids算法
在线阅读 下载PDF
基于K-medoids-GBDT-PSO-LSTM组合模型的短期光伏功率预测 被引量:4
5
作者 戴朝辉 陈昊 +3 位作者 刘莘轶 夏长青 郭嘉毅 于立军 《太阳能学报》 北大核心 2025年第1期654-661,共8页
为保障电网供需平衡和安全稳定运行,提高大型光伏电站功率预测的精度,提出一种基于K中心点聚类算法(K-medoids)、梯度提升树(GBDT)和粒子群优化算法(PSO)组合优化的长短期记忆神经网络(LSTM)的光伏功率短期预测模型。首先,采用K-medoid... 为保障电网供需平衡和安全稳定运行,提高大型光伏电站功率预测的精度,提出一种基于K中心点聚类算法(K-medoids)、梯度提升树(GBDT)和粒子群优化算法(PSO)组合优化的长短期记忆神经网络(LSTM)的光伏功率短期预测模型。首先,采用K-medoids聚类算法对大规模光伏发电数据样本中的天气数据进行不同类别聚类,分为晴天、阴天和雨/雪天3种天气类型;然后,在已有数据基础上构造特征工程,使用GBDT算法分别进行特征重要性分析,筛选出对光伏功率预测具有显著影响的特征,并构建合适大小结构的优化数据集;最后,将重构后的数据集代入PSO算法优化的LSTM模型进行训练,以建立短期预测模型。实验结果表明,该模型拥有更高预测精度,相比单一LSTM模型,在雨/雪天下的RMSE指标降低了12.19%。 展开更多
关键词 光伏发电 功率预测 机器学习 长短期记忆网络 优化算法 粒子群算法
原文传递
基于K-Medoids聚类和经验小波变换的桥梁模态参数识别
6
作者 郭保全 段敏 +2 位作者 胡宏涛 罗凌峰 胡佳男 《公路交通技术》 2025年第5期142-149,167,共9页
针对现有时频域模态参数识别方法存在模态混叠、小波基选择困难等问题,为提升识别精度,将经验小波变换(EWT)引入桥梁模态参数识别领域并对其进行改进,结合某大跨度悬索桥监测数据开展验证研究。首先,提出AR功率谱曲线最优形态解算方法,... 针对现有时频域模态参数识别方法存在模态混叠、小波基选择困难等问题,为提升识别精度,将经验小波变换(EWT)引入桥梁模态参数识别领域并对其进行改进,结合某大跨度悬索桥监测数据开展验证研究。首先,提出AR功率谱曲线最优形态解算方法,通过方差与平滑度指标确定最优AR谱阶次;其次,采用Scalespace方法对谱估计曲线实施频谱分割;再次,提出基于运营期全时段监测数据的特征频率确定方法,将K-Medoids算法引入信号频带坐标稳定图进行聚类,以提升EWT频谱分割精度并获取稳定频带坐标;最后,利用Wasserstein距离与ET指标完成特征IMF分量筛选。研究结果表明:1)改进EWT可成功识别主梁竖弯前3阶模态振型,识别结果与ANSYS有限元理论分析结果基本一致;2)改进EWT能识别更多真实固有模态,特征频率识别误差最小可达1.587‰。综上,改进EWT方法可有效提取信号特征IMF分量,其与希尔伯特变换(HT)结合能高效识别频率、振型等模态参数,且相较传统时频域方法具有更高识别精度,适用于大跨度桥梁模态参数识别。 展开更多
关键词 经验小波变换 AR谱估计 k-medoids聚类 Wasserstein距离 ET指标 桥梁模态参数识别
在线阅读 下载PDF
基于K-Medoids聚类的上市纺织企业经营业绩分析
7
作者 舒服华 《国际纺织导报》 2025年第4期53-58,共6页
我国上市纺织企业的经营业绩表现参差不齐。对这些企业进行聚类分析可以揭示它们之间的差异和特性,为企业制定有效的经营管理策略提供参考,助力其提高经营效益。K-Medoids算法能够规避K-Means算法因异常值或数据畸形分布导致的分类不精... 我国上市纺织企业的经营业绩表现参差不齐。对这些企业进行聚类分析可以揭示它们之间的差异和特性,为企业制定有效的经营管理策略提供参考,助力其提高经营效益。K-Medoids算法能够规避K-Means算法因异常值或数据畸形分布导致的分类不精准问题,其抗干扰能力强,分类质量好。运用K-Medoids算法对我国部分上市纺织企业的经营业绩进行了聚类分析。15家公司的经营业绩被划分为6个类别。对各类别的整体经营业绩优劣进行了排序。 展开更多
关键词 纺织企业 业绩评价 聚类分析 k-medoids算法
在线阅读 下载PDF
基于改进K-Medoids算法的新能源发电功率异常值识别
8
作者 殷立军 陈安 +1 位作者 贺林钰 卞世敏 《电子设计工程》 2025年第20期67-70,75,共5页
功率异常值能够反映能源生产的波动或故障问题,因此对异常值的有效识别能够实现能源的优化调度。为准确识别发电过程中的异常功率参量,提出一种基于改进K-Medoids算法的新能源发电功率异常值识别方法。根据改进K-Medoids算法的定义方程... 功率异常值能够反映能源生产的波动或故障问题,因此对异常值的有效识别能够实现能源的优化调度。为准确识别发电过程中的异常功率参量,提出一种基于改进K-Medoids算法的新能源发电功率异常值识别方法。根据改进K-Medoids算法的定义方程,清洗发电数据,并推导功率特性表达式,实现功率特性分析。提取功率异常值,利用时序关联性条件,确定识别阈值指标的取值范围,完成新能源发电功率异常值识别算法的设计。实验结果表明,应用上述方法识别的异常功率参量所处发电周期阶段,与实际异常发电行为特征完全一致,可有效反映能源生产波动或故障问题,为发电系统优化调度提供数据支撑。 展开更多
关键词 改进k-medoids算法 新能源发电 功率异常值 数据清洗 时序关联性
在线阅读 下载PDF
基于K-Medoids聚类的上市造纸企业业绩分析
9
作者 舒服华 《中华纸业》 2025年第8期24-28,共5页
我国上市造纸企业的经营业绩良莠不齐,对其进行聚类分析可以揭示它们之间的差异和特点,为其制定有效的经营管理策略提供参考,以帮助企业提高经营效益。K-Medoids算法克服了K-Means容易受到异常值或畸形分布的影响导致分类不精确的缺点,... 我国上市造纸企业的经营业绩良莠不齐,对其进行聚类分析可以揭示它们之间的差异和特点,为其制定有效的经营管理策略提供参考,以帮助企业提高经营效益。K-Medoids算法克服了K-Means容易受到异常值或畸形分布的影响导致分类不精确的缺点,抗干扰能力强,分类质量好。运用K-Medoids算法对我国部分上市造纸企业的经营业绩进行了聚类分析,15家公司的经营业绩被划分为6个类别,并对这些类别的整体经营业绩的优劣进行了排序。 展开更多
关键词 上市造纸企业 经营业绩 聚类分析 k-medoids算法
在线阅读 下载PDF
基于K-Medoids算法的传感网络线性数据异常值识别
10
作者 郑帅 海丹凤 +1 位作者 吴艳红 赖东旭 《东莞理工学院学报》 2025年第5期33-38,132,共7页
为降低对数据中噪声数据点敏感度,避免发生噪声数据点误识情况、可靠获取传感网络线性数据异常值,提出基于K-Medoids算法的传感网络线性数据异常值识别方法。通过滑动窗口采集传感网络线性数据后,依据主成分分析提取该数据中关键信息,... 为降低对数据中噪声数据点敏感度,避免发生噪声数据点误识情况、可靠获取传感网络线性数据异常值,提出基于K-Medoids算法的传感网络线性数据异常值识别方法。通过滑动窗口采集传感网络线性数据后,依据主成分分析提取该数据中关键信息,并计算特征矢量贡献值,选择最大值的部分作为数据特征;引入对数据特征谱信号排序的算法计算选择的数据特征间的相似度,最终确定聚类中心;依据K-Medoids算法将所有数据分配至不同聚类中心所在类别中,最终实现传感网络线性数据异常值识别。通过实验验证,该方法能够精准捕获原始数据中关键信息特征,依据该特征能够有效区分传感网络正常数据模式与潜在异常模式,有效识别传感网络中单一类型异常和多种异常类型融合情况,展现出优异性能,有助于提升传感网络运行稳定性。 展开更多
关键词 k-medoids算法 传感网络线性数据 异常值识别 滑动窗口模型 主成分分析 聚类中心
在线阅读 下载PDF
A State of Art Analysis of Telecommunication Data by k-Means and k-Medoids Clustering Algorithms
11
作者 T. Velmurugan 《Journal of Computer and Communications》 2018年第1期190-202,共13页
Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-clus... Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-cluster similarity and low inter-cluster similarity. Clustering techniques are applied in different domains to predict future trends of available data and its uses for the real world. This research work is carried out to find the performance of two of the most delegated, partition based clustering algorithms namely k-Means and k-Medoids. A state of art analysis of these two algorithms is implemented and performance is analyzed based on their clustering result quality by means of its execution time and other components. Telecommunication data is the source data for this analysis. The connection oriented broadband data is given as input to find the clustering quality of the algorithms. Distance between the server locations and their connection is considered for clustering. Execution time for each algorithm is analyzed and the results are compared with one another. Results found in comparison study are satisfactory for the chosen application. 展开更多
关键词 K-MEANS algorithm k-medoids algorithm DATA CLUSTERING Time COMPLEXITY TELECOMMUNICATION DATA
暂未订购
基于GIS技术与K-medoids聚类的多源测绘数据集成
12
作者 孙琨 唐江森 《河北省科学院学报》 2025年第3期9-14,共6页
在多源测绘数据集成过程中,数据波动性易导致数据集成质量下降。为此,本文提出一种基于GIS技术与K-medoids聚类的多源测绘数据集成方法。首先,利用K-medoids聚类算法对多源测绘数据进行格式与坐标系转换,构造数据空间属性要素的模糊矩阵... 在多源测绘数据集成过程中,数据波动性易导致数据集成质量下降。为此,本文提出一种基于GIS技术与K-medoids聚类的多源测绘数据集成方法。首先,利用K-medoids聚类算法对多源测绘数据进行格式与坐标系转换,构造数据空间属性要素的模糊矩阵,结合源域特征与聚类样本数,判定数据的源域;其次,借助GIS系统的挖掘架构,构建测绘数据的尺度空间数据库,结合集成路径的复杂度,选择丢包率最小的路径作为数据集成路径;最后,引入XML解析方法对高度融合的数据进行解析处理,平滑数据的波动性,并计算数据特征向量之间的紧密度,从而构造数据集成函数,以此实现多源测绘数据的高效整合。实验结果表明,无论数据规模大小,该方法均能有效提升集成后数据的NMI值,集成质量较好。 展开更多
关键词 GIS技术 k-medoids聚类 多源测绘数据 数据挖掘 数据质量
在线阅读 下载PDF
基于K-medoids聚类处理的梯级水利枢纽信息智能整合方法
13
作者 亓振涛 《电子设计工程》 2025年第3期13-17,23,共6页
为了提高梯级水利枢纽信息在实际工作中的利用率,提出基于K-medoids聚类处理的梯级水利枢纽信息智能整合方法。从项目信息、水文、枢纽设备等方面,采集梯级水利枢纽信息,针对不同信息类型通过清洗、归一化等步骤,完成初始信息的预处理... 为了提高梯级水利枢纽信息在实际工作中的利用率,提出基于K-medoids聚类处理的梯级水利枢纽信息智能整合方法。从项目信息、水文、枢纽设备等方面,采集梯级水利枢纽信息,针对不同信息类型通过清洗、归一化等步骤,完成初始信息的预处理。以梯级水利枢纽信息特征的提取结果为处理对象,利用K-medoids处理技术完成梯级水利枢纽信息的聚类,通过整合信息的冗余过滤,得出信息智能整合结果。通过性能测试实验得出结论:与传统整合方法相比,优化方法的完整度提高了6.06%、冗余度降低了1.79%,同时整合信息具有更高的利用率。 展开更多
关键词 k-medoids聚类处理技术 梯级水利枢纽 水利信息 信息整合
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
14
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
15
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
16
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
17
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
18
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
一种高效的K-medoids聚类算法 被引量:48
19
作者 夏宁霞 苏一丹 覃希 《计算机应用研究》 CSCD 北大核心 2010年第12期4517-4519,共3页
针对K-medoids算法初始中心点选择敏感、大数据集聚类应用中性能低下等缺点,提出一个基于初始中心微调与增量中心候选集的改进K-medoids算法。新算法以微调方式优化初始中心,以中心候选集逐步扩展的方式来降低中心轮换的计算复杂性。实... 针对K-medoids算法初始中心点选择敏感、大数据集聚类应用中性能低下等缺点,提出一个基于初始中心微调与增量中心候选集的改进K-medoids算法。新算法以微调方式优化初始中心,以中心候选集逐步扩展的方式来降低中心轮换的计算复杂性。实验结果表明,相对于传统的K-medoids算法,新算法可以提高聚类质量,有效缩短计算时间。 展开更多
关键词 聚类 k-medoids算法 中心微调 增量候选
在线阅读 下载PDF
基于距离不等式的K-medoids聚类算法 被引量:16
20
作者 余冬华 郭茂祖 +3 位作者 刘扬 任世军 刘晓燕 刘国军 《软件学报》 EI CSCD 北大核心 2017年第12期3115-3128,共14页
研究加速K-medoids聚类算法,首先以PAM(partitioning around medoids)、TPAM(triangular inequality elimination criteria PAM)算法为基础给出两个加速引理,并基于中心点之间距离不等式提出两个新加速定理.同时,以O(n+K^2)额外内存空... 研究加速K-medoids聚类算法,首先以PAM(partitioning around medoids)、TPAM(triangular inequality elimination criteria PAM)算法为基础给出两个加速引理,并基于中心点之间距离不等式提出两个新加速定理.同时,以O(n+K^2)额外内存空间开销辅助引理、定理的结合而提出加速SPAM(speed up PAM)聚类算法,使得K-medoids聚类算法复杂度由O(K(n-K)~2)降低至O((n-K)~2).在实际及人工模拟数据集上的实验结果表明:相对于PAM,TPAM,FKMEDOIDS(fast K-medoids)等参考算法均有改进,运行时间比PAM至少提升0.828倍. 展开更多
关键词 数据挖掘 聚类算法 k-medoids 距离不等式
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部