在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随...在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。展开更多
为了对铁路电气设备进行智能检测,并提升检测精度,采用了You Only Look Once version 4算法,并从特征获取、全局信息获取和损失函数三个角度对其进行初步改进。基于提升模型检测速度的目的,又引入了K均值算法及深度可分离卷积。经过测...为了对铁路电气设备进行智能检测,并提升检测精度,采用了You Only Look Once version 4算法,并从特征获取、全局信息获取和损失函数三个角度对其进行初步改进。基于提升模型检测速度的目的,又引入了K均值算法及深度可分离卷积。经过测试发现,在实际应用中,检测模型的准确率和召回率最大值分别为93.83%和94.61%,耗时和内存占用率最小值分别为22.61 ms和5.8%。所设计的智能检测模型具有良好的检测精度和速度,能够较好地对现实中的铁路电气设备进行检测。展开更多
文摘在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。
文摘为了对铁路电气设备进行智能检测,并提升检测精度,采用了You Only Look Once version 4算法,并从特征获取、全局信息获取和损失函数三个角度对其进行初步改进。基于提升模型检测速度的目的,又引入了K均值算法及深度可分离卷积。经过测试发现,在实际应用中,检测模型的准确率和召回率最大值分别为93.83%和94.61%,耗时和内存占用率最小值分别为22.61 ms和5.8%。所设计的智能检测模型具有良好的检测精度和速度,能够较好地对现实中的铁路电气设备进行检测。