期刊文献+
共找到2,884篇文章
< 1 2 145 >
每页显示 20 50 100
Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review 被引量:14
1
作者 Ernest Yeboah Boateng Joseph Otoo Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2020年第4期341-357,共17页
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (... In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement. 展开更多
关键词 Classification algorithms NON-PARAMETRIC k-nearest-neighbor Neural Networks Random Forest Support Vector Machines
在线阅读 下载PDF
Nearest neighbor search algorithm based on multiple background grids for fluid simulation 被引量:2
2
作者 郑德群 武频 +1 位作者 尚伟烈 曹啸鹏 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期405-408,共4页
The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth... The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy. 展开更多
关键词 multiple background grids smoothed particle hydrodynamics (SPH) nearest neighbor search algorithm parallel computing
在线阅读 下载PDF
A Short-Term Traffic Flow Forecasting Method Based on a Three-Layer K-Nearest Neighbor Non-Parametric Regression Algorithm 被引量:7
3
作者 Xiyu Pang Cheng Wang Guolin Huang 《Journal of Transportation Technologies》 2016年第4期200-206,共7页
Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting... Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting. 展开更多
关键词 Three-Layer Traffic Flow Forecasting k-nearest neighbor Non-Parametric Regression
在线阅读 下载PDF
基于K-Nearest Neighbor和神经网络的糖尿病分类研究 被引量:6
4
作者 陈真诚 杜莹 +3 位作者 邹春林 梁永波 吴植强 朱健铭 《中国医学物理学杂志》 CSCD 2018年第10期1220-1224,共5页
为实现糖尿病的早期筛查,提高对糖尿病分类的准确度,在研究有关糖尿病危险因素的基础上,增加糖化血红蛋白作为糖尿病早期筛查的特征之一。研究中选取与人类最为相似的食蟹猴作为研究对象,利用年龄、血压、腹围、BMI、糖化血红蛋白以及... 为实现糖尿病的早期筛查,提高对糖尿病分类的准确度,在研究有关糖尿病危险因素的基础上,增加糖化血红蛋白作为糖尿病早期筛查的特征之一。研究中选取与人类最为相似的食蟹猴作为研究对象,利用年龄、血压、腹围、BMI、糖化血红蛋白以及空腹血糖作为特征输入,将正常、糖尿病前期和糖尿病作为类别输出,利用K-Nearest Neighbor(KNN)和神经网络两种方法对其分类。发现在增加糖化血红蛋白作为分类特征之一时,KNN(K=3)和神经网络的分类准确率分别为81.8%和92.6%,明显高于没有这一特征时的准确率(68.1%和89.7%),KNN和神经网络都可以对食蟹猴数据进行分类和识别,起到早期筛查作用。 展开更多
关键词 糖尿病 糖化血红蛋白 空腹血糖 kNN 神经网络 食蟹猴
在线阅读 下载PDF
一种基于特征加权的K Nearest Neighbor算法 被引量:6
5
作者 桑应宾 刘琼荪 《海南大学学报(自然科学版)》 CAS 2008年第4期352-355,共4页
传统的KNN算法一般采用欧式距离公式度量两样本间的距离.由于在实际样本数据集合中每一个属性对样本的贡献作用是不尽相同的,通常采用加权欧式距离公式.笔者提出一种计算权重的方法,即基于特征加权KNN算法.经实验证明,该算法与经典的赋... 传统的KNN算法一般采用欧式距离公式度量两样本间的距离.由于在实际样本数据集合中每一个属性对样本的贡献作用是不尽相同的,通常采用加权欧式距离公式.笔者提出一种计算权重的方法,即基于特征加权KNN算法.经实验证明,该算法与经典的赋权算法相比具有较好的分类效果. 展开更多
关键词 特征权重 k近邻 交叉验证
在线阅读 下载PDF
基于PNCC声纹特征提取技术和POA-KNN算法的齿轮箱声纹识别故障诊断
6
作者 廖力达 赵阁阳 +1 位作者 魏诚 刘川江 《机电工程》 北大核心 2026年第1期24-33,共10页
风力机齿轮箱是风力发电系统的核心组件之一,承担着将风能转化为电能的重要任务。由于运行环境的恶劣以及长期使用造成的磨损,齿轮箱常常会发生各种故障,从而导致齿轮箱运行过程中产生不同的噪声,严重影响风力机的正常运行和发电效率,因... 风力机齿轮箱是风力发电系统的核心组件之一,承担着将风能转化为电能的重要任务。由于运行环境的恶劣以及长期使用造成的磨损,齿轮箱常常会发生各种故障,从而导致齿轮箱运行过程中产生不同的噪声,严重影响风力机的正常运行和发电效率,因此,提出了一种基于功率正则化倒谱系数(PNCC)声纹特征提取技术,以及行星优化算法与K近邻算法(POA-KNN)模型的风力机齿轮箱声纹识别故障诊断方法。首先,采用LMS噪声采集仪采集了6种不同状态下的风力机齿轮箱噪声数据;然后,使用了PNCC声纹特征提取的方法,提取了齿轮箱噪声信号的声纹图谱;在KNN的基础上加入行星优化算法(POA)优化了K值,提出了性能较高的POA-KNN分类模型;最后,根据6类不同状态下的齿轮数据集,采用对比试验和消融实验验证了模型性能。研究结果表明:POA-KNN模型对齿轮箱的PNCC声纹图分类准确率达到99.4%,比KNN基线模型提升了1.9%。POA-KNN分类模型能很好地对数据集中不同状态下的齿轮箱进行分类,更高效地针对风力机齿轮箱中存在的故障进行诊断。 展开更多
关键词 齿轮箱 功率正则化倒谱系数 声纹识别 声纹特征图谱 行星优化算法与k近邻算法 分类模型
在线阅读 下载PDF
基于变量筛选和OS-KELM的出口SO_(2)浓度预测
7
作者 金秀章 陈佳政 张瑾 《华北电力大学学报(自然科学版)》 北大核心 2026年第1期149-158,共10页
针对火力发电厂频繁调峰导致锅炉燃烧不稳定、出口SO_(2)浓度波动范围大难以准确、及时测量的问题,提出了一种基于变量筛选和在线核极限学习机的出口SO_(2)浓度预测模型。首先通过机理分析选择与出口SO_(2)浓度有关的影响变量;再利用基... 针对火力发电厂频繁调峰导致锅炉燃烧不稳定、出口SO_(2)浓度波动范围大难以准确、及时测量的问题,提出了一种基于变量筛选和在线核极限学习机的出口SO_(2)浓度预测模型。首先通过机理分析选择与出口SO_(2)浓度有关的影响变量;再利用基于FCBF改进的mRMR算法去除冗余变量,并对筛选后的变量使用K近邻互信息算法进行时延补偿;然后对补偿后的变量利用变分模态分解(VMD)进行分解,选择相关性最大的变量子集作为最终模型输入;最后利用天牛群算法(Beetle swarm optimization,BSO)优化在线核极限学习机(Online sequential-kernel based extreme learning machine,OS-KELM)参数建立出口SO_(2)浓度预测模型。利用电厂真实运行数据进行实验,结果表明,基于OS-KELM的预测模型其预测效果优于ELM、KELM、OS-ELM模型,具有较高的模型预测精度。 展开更多
关键词 变量筛选 VMD分解 时延补偿 k近邻互信息 天牛群算法 在线核极限学习机
在线阅读 下载PDF
基于不规则区域划分方法的k-Nearest Neighbor查询算法 被引量:1
8
作者 张清清 李长云 +3 位作者 李旭 周玲芳 胡淑新 邹豪杰 《计算机系统应用》 2015年第9期186-190,共5页
随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细... 随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细介绍了一种基于不规则区域划分方法的改进型k NN查询算法,并利用对大规模数据集进行分布式并行计算的模型Map Reduce对该算法加以实现.实验结果与分析表明,Map Reduce框架下基于不规则区域划分方法的k NN查询算法可以获得较高的数据处理效率,并可以较好的支持大数据环境下数据的高效查询. 展开更多
关键词 k-nearest neighbor(k NN)查询算法 不规则区域划分方法 MAP REDUCE 大数据
在线阅读 下载PDF
Pruned fuzzy K-nearest neighbor classifier for beat classification 被引量:4
9
作者 Muhammad Arif Muhammad Usman Akram Fayyaz-ul-Afsar Amir Minhas 《Journal of Biomedical Science and Engineering》 2010年第4期380-389,共10页
Arrhythmia beat classification is an active area of research in ECG based clinical decision support systems. In this paper, Pruned Fuzzy K-nearest neighbor (PFKNN) classifier is proposed to classify six types of beats... Arrhythmia beat classification is an active area of research in ECG based clinical decision support systems. In this paper, Pruned Fuzzy K-nearest neighbor (PFKNN) classifier is proposed to classify six types of beats present in the MIT-BIH Arrhythmia database. We have tested our classifier on ~ 103100 beats for six beat types present in the database. Fuzzy KNN (FKNN) can be implemented very easily but large number of training examples used for classification can be very time consuming and requires large storage space. Hence, we have proposed a time efficient Arif-Fayyaz pruning algorithm especially suitable for FKNN which can maintain good classification accuracy with appropriate retained ratio of training data. By using Arif-Fayyaz pruning algorithm with Fuzzy KNN, we have achieved a beat classification accuracy of 97% and geometric mean of sensitivity of 94.5% with only 19% of the total training examples. The accuracy and sensitivity is comparable to FKNN when all the training data is used. Principal Component Analysis is used to further reduce the dimension of feature space from eleven to six without compromising the accuracy and sensitivity. PFKNN was found to robust against noise present in the ECG data. 展开更多
关键词 ARRHYTHMIA ECG k-nearest neighbor PRUNING FUZZY Classification
暂未订购
Support Vector Machine-Based Fault Diagnosis of Power Transformer Using k Nearest-Neighbor Imputed DGA Dataset 被引量:4
10
作者 Zahriah Binti Sahri Rubiyah Binti Yusof 《Journal of Computer and Communications》 2014年第9期22-31,共10页
Missing values are prevalent in real-world datasets and they may reduce predictive performance of a learning algorithm. Dissolved Gas Analysis (DGA), one of the most deployable methods for detecting and predicting inc... Missing values are prevalent in real-world datasets and they may reduce predictive performance of a learning algorithm. Dissolved Gas Analysis (DGA), one of the most deployable methods for detecting and predicting incipient faults in power transformers is one of the casualties. Thus, this paper proposes filling-in the missing values found in a DGA dataset using the k-nearest neighbor imputation method with two different distance metrics: Euclidean and Cityblock. Thereafter, using these imputed datasets as inputs, this study applies Support Vector Machine (SVM) to built models which are used to classify transformer faults. Experimental results are provided to show the effectiveness of the proposed approach. 展开更多
关键词 MISSING VALUES Dissolved Gas Analysis Support Vector Machine k-nearest neighborS
在线阅读 下载PDF
Mapping aboveground biomass by integrating geospatial and forest inventory data through a k-nearest neighbor strategy in North Central Mexico 被引量:2
11
作者 Carlos A AGUIRRE-SALADO Eduardo J TREVIO-GARZA +7 位作者 Oscar A AGUIRRE-CALDERóN Javier JIMNEZ-PREZ Marco A GONZLEZ-TAGLE José R VALDZ-LAZALDE Guillermo SNCHEZ-DíAZ Reija HAAPANEN Alejandro I AGUIRRE-SALADO Liliana MIRANDA-ARAGóN 《Journal of Arid Land》 SCIE CSCD 2014年第1期80-96,共17页
As climate change negotiations progress,monitoring biomass and carbon stocks is becoming an important part of the current forest research.Therefore,national governments are interested in developing forest-monitoring s... As climate change negotiations progress,monitoring biomass and carbon stocks is becoming an important part of the current forest research.Therefore,national governments are interested in developing forest-monitoring strategies using geospatial technology.Among statistical methods for mapping biomass,there is a nonparametric approach called k-nearest neighbor(kNN).We compared four variations of distance metrics of the kNN for the spatially-explicit estimation of aboveground biomass in a portion of the Mexican north border of the intertropical zone.Satellite derived,climatic,and topographic predictor variables were combined with the Mexican National Forest Inventory(NFI)data to accomplish the purpose.Performance of distance metrics applied into the kNN algorithm was evaluated using a cross validation leave-one-out technique.The results indicate that the Most Similar Neighbor(MSN)approach maximizes the correlation between predictor and response variables(r=0.9).Our results are in agreement with those reported in the literature.These findings confirm the predictive potential of the MSN approach for mapping forest variables at pixel level under the policy of Reducing Emission from Deforestation and Forest Degradation(REDD+). 展开更多
关键词 k-nearest neighbor Mahalanobis most similar neighbor MODIS BRDF-adjusted reflectance forest inventory the policy of Reducing Emission from Deforestation and Forest Degradation
在线阅读 下载PDF
Empirical Mode Decomposition-k Nearest Neighbor Models for Wind Speed Forecasting
12
作者 Ye Ren P. N. Suganthan 《Journal of Power and Energy Engineering》 2014年第4期176-185,共10页
Hybrid model is a popular forecasting model in renewable energy related forecasting applications. Wind speed forecasting, as a common application, requires fast and accurate forecasting models. This paper introduces a... Hybrid model is a popular forecasting model in renewable energy related forecasting applications. Wind speed forecasting, as a common application, requires fast and accurate forecasting models. This paper introduces an Empirical Mode Decomposition (EMD) followed by a k Nearest Neighbor (kNN) hybrid model for wind speed forecasting. Two configurations of EMD-kNN are discussed in details: an EMD-kNN-P that applies kNN on each decomposed intrinsic mode function (IMF) and residue for separate modelling and forecasting followed by summation and an EMD-kNN-M that forms a feature vector set from all IMFs and residue followed by a single kNN modelling and forecasting. These two configurations are compared with the persistent model and the conventional kNN model on a wind speed time series dataset from Singapore. The results show that the two EMD-kNN hybrid models have good performance for longer term forecasting and EMD-kNN-M has better performance than EMD-kNN-P for shorter term forecasting. 展开更多
关键词 WIND SPEED Forecasting Empirical MODE DECOMPOSITION k nearest neighbor
在线阅读 下载PDF
Nearest neighbor search algorithm for GBD tree spatial data structure
13
作者 Yutaka Ohsawa Takanobu Kurihara Ayaka Ohki 《重庆邮电大学学报(自然科学版)》 2007年第3期253-259,共7页
This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteris... This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments. 展开更多
关键词 邻居搜索算法 GBD树 空间数据结构 动态数据环境 地理信息系统 计算机辅助设计
在线阅读 下载PDF
Face Recognition by Combining Wavelet Transform and k-Nearest Neighbor 被引量:2
14
作者 Yugang Jiang Ping Guo 《通讯和计算机(中英文版)》 2005年第9期50-53,共4页
在线阅读 下载PDF
基于K互近邻与核密度估计的DPC算法 被引量:2
15
作者 周玉 夏浩 +1 位作者 刘虹瑜 白磊 《北京航空航天大学学报》 北大核心 2025年第6期1978-1990,共13页
快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)... 快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)的DPC(KKDPC)算法。通过K近邻和核密度估计方法得到数据点的K互近邻数量和局部核密度;将K互近邻数量与局部核密度进行加和获得新的局部密度;根据数据点的局部密度得到相对距离,并通过构建决策图选取聚类中心及分配非中心点。利用人工数据集和真实数据集进行实验,并与DPC、基于密度的噪声空间聚类应用(DBSCAN)、K-means、模糊C均值聚类算法(FCM)、基于K近邻的DPC(DPCKNN)、近邻优化DPC(DPC-NNO)、基于模糊加权共享邻居的DPC(DPC-FWSN)算法进行对比。通过计算调整互信息(AMI)、调整兰德指数(ARI)、归一化互信息(NMI)来验证KKDPC算法的性能。实验结果表明:KKDPC算法能更加准确地识别聚类中心,有效地提高聚类精度。 展开更多
关键词 聚类算法 密度峰值 k近邻 k互近邻 核密度估计
原文传递
基于K近邻算法的高粘结性能混凝土抗压强度预测 被引量:1
16
作者 伍晓圆 刘艳 《粘接》 2025年第3期24-27,共4页
针对掺合料种类繁多,无法适应粘结界面的粗糙度,降低了抗压强度的预测精度问题,从不同硅灰掺量、钢纤维掺量、粉煤灰掺量角度,制备不同配合比条件的高粘结性能混凝土试件,将不同配合比掺量数据作为K近邻算法的输入,以适应粘结界面的粗糙... 针对掺合料种类繁多,无法适应粘结界面的粗糙度,降低了抗压强度的预测精度问题,从不同硅灰掺量、钢纤维掺量、粉煤灰掺量角度,制备不同配合比条件的高粘结性能混凝土试件,将不同配合比掺量数据作为K近邻算法的输入,以适应粘结界面的粗糙度,计算新配比样本与参考配比样本配比特征的欧几里得距离,将距离最小的参考配比样本中混凝土抗压强度作为新配比样本中混凝土抗压强度预测值,提高抗压强度的预测精度。试验结果表明,硅灰掺量、钢纤维掺量、粉煤灰掺量分别是25%、4%、10%时,高粘结性能混凝土抗压强度较优。 展开更多
关键词 k近邻算法 高粘结性能 抗压强度 超高性能混凝土 配合比
在线阅读 下载PDF
一种融合贝叶斯优化的K最近邻分类算法 被引量:3
17
作者 高海宾 《绵阳师范学院学报》 2025年第5期79-87,共9页
K最近邻分类算法因其简单直观,在分类和回归任务中得到广泛应用,但其性能高度依赖于超参数配置.为了解决这一问题,提出了一种融合贝叶斯优化的K最近邻分类算法,旨在能自动化地调整KNN算法的超参数,以提高分类精度和泛化能力.首先概述了... K最近邻分类算法因其简单直观,在分类和回归任务中得到广泛应用,但其性能高度依赖于超参数配置.为了解决这一问题,提出了一种融合贝叶斯优化的K最近邻分类算法,旨在能自动化地调整KNN算法的超参数,以提高分类精度和泛化能力.首先概述了KNN算法的基本原理,并分析了超参数对算法性能的影响.随后,探讨了贝叶斯优化的基础理论及其在超参数优化中的应用.实验过程中,通过对Wine数据集的分类验证了算法的有效性和可靠性,再通过一系列实验,对比了贝叶斯优化、网格搜索和随机搜索等方法在不同规模数据集上的性能,结果显示,贝叶斯优化在大规模数据集上展现出显著的时间效率优势,能够快速收敛至最优或近似最优的超参数配置.最后讨论了该算法的局限性,并提出了未来可能的研究方向. 展开更多
关键词 k最近邻算法 贝叶斯优化 超参数 分类性能
在线阅读 下载PDF
DTWAWKNN驱动的蓝牙/WiFi指纹定位方法 被引量:1
18
作者 杨明 纪冬华 《导航定位学报》 北大核心 2025年第3期189-197,共9页
针对蓝牙/无线保真(WiFi)指纹定位效果差、算法复杂度高等问题,提出一种动态时间规整辅助加权K近邻(DTWAWKNN)驱动的蓝牙/WiFi指纹定位方法:离线阶段,通过动态时间规整(DTW)算法计算不等维度的蓝牙、WiFi和蓝牙/WiFi混合指纹之间的相似... 针对蓝牙/无线保真(WiFi)指纹定位效果差、算法复杂度高等问题,提出一种动态时间规整辅助加权K近邻(DTWAWKNN)驱动的蓝牙/WiFi指纹定位方法:离线阶段,通过动态时间规整(DTW)算法计算不等维度的蓝牙、WiFi和蓝牙/WiFi混合指纹之间的相似度,并基于加权K近邻(WKNN)实现匹配定位,然后以蓝牙、WiFi及蓝牙/WiFi混合指纹库与蓝牙、WiFi及蓝牙/WiFi混合指纹的匹配结果为定位特征,构建基于多类型指纹匹配定位结果的离线定位指纹库;在线阶段,基于DTWAWKNN实现蓝牙、WiFi和蓝牙/WiFi混合指纹之间的匹配定位,获取基于多类型指纹匹配定位结果的在线定位指纹,再基于WKNN算法实现离线定位指纹库和在线定位指纹的匹配定位。实验结果表明,提出方法的定位效果远优于WKNN、随机森林(RF)和支持向量机(SVM),定位精度可至少提高67.74%,定位稳定性最少提高54.51%,算法复杂度至少降低77.9%。 展开更多
关键词 蓝牙 无线保真(WiFi) 指纹定位 动态时间规整(DTW) 加权k近邻(WkNN)
在线阅读 下载PDF
基于改进WKNN的CSI被动室内指纹定位方法
19
作者 邵小强 马博 +3 位作者 韩泽辉 杨永德 原泽文 李鑫 《吉林大学学报(工学版)》 北大核心 2025年第7期2444-2454,共11页
针对幅值和相位构造包含干扰过多导致定位精度低的问题,提出了一种基于改进加权K最近邻算法的信道状态信息被动室内定位方法。离线阶段,采用隔离森林法,改进阈值的小波域去噪和线性变换法对采集到的信道状态信息进行预处理,将处理后的... 针对幅值和相位构造包含干扰过多导致定位精度低的问题,提出了一种基于改进加权K最近邻算法的信道状态信息被动室内定位方法。离线阶段,采用隔离森林法,改进阈值的小波域去噪和线性变换法对采集到的信道状态信息进行预处理,将处理后的幅相信息共同作为指纹数据,构造与参考点位置信息相关的稳定指纹数据库。在线阶段,提出改进的加权K近邻算法,对估计坐标进行重复匹配,该算法在一次匹配中得到位置坐标后,求该位置坐标在K个近邻点间的欧氏距离,并使用高斯变换对K个距离值进行权重计算,完成人员的定位。分别在教室和大厅进行实验模拟测试,实验结果表明:采用本文算法约81%的测试位置误差控制在1 m以内,可以有效提高定位精度。 展开更多
关键词 室内定位 信道状态信息 被动定位 改进阈值的小波域去噪 改进的加权k近邻算法 高斯变换
原文传递
KMDW和ISVDD方法在钻头磨损状态识别中的应用
20
作者 郝旺身 娄本池 +4 位作者 董辛旻 王林恒 朱春辉 陈世金 王亚坤 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期179-186,共8页
为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVD... 为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVDD模型进行故障分类,对混叠样本采用K近邻隶属度值进行识别,并采用改进的蝴蝶优化算法(IBOA)优化SVDD模型参数。在标准数据集上验证所提方法的优越性,结果表明:加入K近邻隶属度值可使F值和准确率分别提升6.36%和6.59%;KMDW相比K均值聚类方法的ARI值和NMI值分别提升10.01%和10.75%,能够达到更好的聚类效果;经蝴蝶优化算法改进后模型识别精度进一步提高。将所提方法应用于钻头磨损状态的识别,识别准确率达到92.83%,证明其具有较好的识别精度和通用性。 展开更多
关键词 SVDD k均值密度权重聚类 蝴蝶优化算法 k近邻算法 钻头磨损状态识别
在线阅读 下载PDF
上一页 1 2 145 下一页 到第
使用帮助 返回顶部