Multiferroic tunnel junctions(MFTJs),which combine tunneling magnetoresistance(TMR)and electroresistance(TER)efects,have emerged as key candidates for data storage.Two-dimensional van der Waals(vdW)MFTJs,in particular...Multiferroic tunnel junctions(MFTJs),which combine tunneling magnetoresistance(TMR)and electroresistance(TER)efects,have emerged as key candidates for data storage.Two-dimensional van der Waals(vdW)MFTJs,in particular,are promising spintronic devices for the post-Moore era.However,these vdW MFTJs are typically based on multiferroics composed of ferromagnetic and ferroelectric materials or multilayer magnetic materials with sliding ferroelectricity,which increases device fabrication complexity.In this work,we design a vdW MFTJ using bilayer MoPtGe_(2)S_(6),a material with homologous multiferroicity in each monolayer,combined with symmetric PtTe_(2)electrodes.Using frst-principles calculations based on density functional theory and nonequilibrium Green's functions,we theoretically explore the spin-polarized electronic transport properties of this MFTJ.By controlling the ferroelectric and ferromagnetic polarization directions of bilayer MoPtGe_(2)S_(6),the MFTJ can exhibit six distinct non-volatile resistance states,with maximum TMR(137%)and TER(1943%)ratios.Under biaxial strain,TMR and TER can increase to 265%and 4210%,respectively.The TER ratio also increases to 2186%under a 0.1 V bias voltage.Remarkably,the MFTJ exhibits a pronounced spin-fltering and a signifcant negative diferential resistance efect.These fndings not only highlight the potential of monolayer multiferroic MoPtGe_(2)S_(6)for MFTJs but also ofer valuable theoretical insights for future experimental investigations.展开更多
Objective:Cytotoxic T lymphocytes(CTLs)play a crucial role in the therapeutic approach to hepatocellular carcinoma(HCC).Recent research has indicated that junctional adhesion molecule-like protein(JAML)enhances the an...Objective:Cytotoxic T lymphocytes(CTLs)play a crucial role in the therapeutic approach to hepatocellular carcinoma(HCC).Recent research has indicated that junctional adhesion molecule-like protein(JAML)enhances the antitumor activity of CD8+T cells.Our study investigates the role of JAML+CD8+T cells in HCC.Methods:We utilized time-of-flight mass cytometry and an orthotopic mouse model of HCC to examine histone modifications in tumor-infiltrating immune cells undergoing immunotherapy.Flow cytometry was used to assess CD4+T cells differentiation and JAML expression in CD8+T cells infiltrating HCC.Correlation analysis revealed a strong positive correlation between lactate dehydrogenase A+(LDHA+)CD4+T cells and JAML+CD8+T cells.Subsequently,we evaluated the therapeutic effects of an agonistic anti-JAML antibody,both alone and combined with immunotherapy.Finally,RNA sequencing was conducted to identify potential regulatory mechanisms.Results:Immunotherapy significantly increased the percentage of CD8+T cells infiltrating HCC and induced histone modifications,such as H3K18 lactylation(H3K18la)in CD4+T cells.Flow cytometry analysis revealed that lactate promotes the differentiation of CD4+T cells into Th1 cells.LDHA,an enzyme that converts pyruvate to lactate,plays a key role in this process.Correlation analysis revealed a strong positive relationship between LDHA+CD4+T cells and JAML+CD8+T cells in patients who responded to immunotherapy.Moreover,high JAML expression in CD8+T cells was associated with a more favorable prognosis.In vivo experiments demonstrated that agonistic anti-JAML antibody therapy reduced tumor volume and significantly prolonged the survival of tumor-bearing mice,independent of the effects of anti-programmed cell death protein ligand-1 antibody(αPD-L1)-mediated immunotherapy.Pathway enrichment analysis further revealed that JAML enhances CTL responses through the oxidative phosphorylation pathway.Conclusions:Activation of JAML enhances CTL responses in HCC treatment,independent ofαPD-L1-mediated immunotherapy,providing a promising strategy for advanced HCC.展开更多
Methane(CH4),the predominant component of natural gas and shale gas,is regarded as a promising carbon feedstock for chemical synthesis[1].However,considering the extreme stability of CH4 molecules,it's quite chall...Methane(CH4),the predominant component of natural gas and shale gas,is regarded as a promising carbon feedstock for chemical synthesis[1].However,considering the extreme stability of CH4 molecules,it's quite challenging in simultaneously achieving high activity and selectivity for target products under mild conditions,especially when synthesizing high-value C2t chemicals such as ethanol[2].The conversion of methane to ethanol by photocatalysis is promising for achieving transformation under ambient temperature and pressure conditions.Currently,the apparent quantum efficiency(AQE)of solar-driven methane-to-ethanol conversion is generally below 0.5%[3,4].Furthermore,the stability of photocatalysts remains inadequate,offering substantial potential for further improvement.展开更多
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways...Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.展开更多
This study examines the influence of magnetic field and temperature on the transient voltage of a polycrystalline silicon radial junction solar cell in a dynamic regime under multispectral illumination. Radial junctio...This study examines the influence of magnetic field and temperature on the transient voltage of a polycrystalline silicon radial junction solar cell in a dynamic regime under multispectral illumination. Radial junction solar cells represent a major advancement in photovoltaic technologies, as they optimize light absorption and charge collection efficiency. The focus is on the impact of the magnetic field and temperature on the decay of transient voltage, which provides crucial information on recombination processes and the lifetime of minority carriers. The results reveal that the magnetic field tends to increase the transient voltage by directly affecting the transient electron density. Indeed, for B > 7 × 10−5 T, the magnetic field prolongs the relaxation time by increasing the transient voltage amplitude. Additionally, rising temperatures accelerate (ranging from 290 K to 450 K) recombination processes, thereby reducing the transient voltage, although this effect is moderated by the presence of a magnetic field. The study highlights the complex interaction between magnetic field and temperature, with significant impacts on the transient behaviour.展开更多
Tricellulin,a key tricellular tight junction(TJ)protein,is essential for maintaining the barrier integrity of acinar epithelia against macromolecular passage in salivary glands.This study aims to explore the role and ...Tricellulin,a key tricellular tight junction(TJ)protein,is essential for maintaining the barrier integrity of acinar epithelia against macromolecular passage in salivary glands.This study aims to explore the role and regulatory mechanism of tricellulin in the development of salivary gland hypofunction in Sjögren’s syndrome(SS).Employing a multifaceted approach involving patient biopsies,non-obese diabetic(NOD)mice as a SS model,salivary gland acinar cell-specific tricellulin conditional knockout(TricCKO)mice,and IFN-γ-stimulated salivary gland epithelial cells,we investigated the role of tricellulin in SS-related hyposalivation.Our data revealed diminished levels of tricellulin in salivary glands of SS patients.Similarly,NOD mice displayed a reduction in tricellulin expression from the onset of the disease,concomitant with hyposecretion and an increase in salivary albumin content.Consistent with these findings,TricCKO mice exhibited both hyposecretion and leakage of macromolecular tracers when compared to control animals.Mechanistically,the JAK/STAT1/miR-145 axis was identified as mediating the IFN-γ-induced downregulation of tricellulin.Treatment with AT1001,a TJ sealer,ameliorated epithelial barrier dysfunction,restored tricellulin expression,and consequently alleviated hyposalivation in NOD mice.Importantly,treatment with miR-145 antagomir to specifically recover the expression of tricellulin in NOD mice significantly alleviated hyposalivation and macromolecular leakage.Collectively,we identified that tricellulin deficiency in salivary glands contributed to hyposalivation in SS.Our findings highlight tricellulin as a potential therapeutic target for hyposecretion,particularly in the context of reinforcing epithelial barrier function through preventing leakage of macromolecules in salivary glands.展开更多
BACKGROUND Congenital junctional ectopic tachycardia(CJET)is a rare but life-threatening arrhythmia in neonates and infants,often refractory to conventional antiar-rhythmic therapy.Ivabradine,a selective inhibitor of ...BACKGROUND Congenital junctional ectopic tachycardia(CJET)is a rare but life-threatening arrhythmia in neonates and infants,often refractory to conventional antiar-rhythmic therapy.Ivabradine,a selective inhibitor of hyperpolarization-activated cyclic nucleotide-gated channels,has emerged as a promising drug for CJET management.AIM To evaluate the efficacy and safety of ivabradine in the management of CJET.Specifically,this study aims to analyze the dosing strategies,treatment outcomes,and the role of ivabradine as monotherapy or adjunct therapy in patients who have previously received other antiarrhythmic medications.Additionally,this review seeks to assess the impact of ivabradine on heart rate(HR)control,rhythm conversion,and its overall safety profile to provide evidence-based insights into its clinical use for CJET management.METHODS This systematic review aims to evaluate the outcomes of ivabradine,either as monotherapy or as an adjunctive therapy,in the treatment of CJET.A compre-hensive literature search was conducted across multiple electronic databases to identify relevant studies investigating the use of ivabradine in CJET.Stringent inclusion and exclusion criteria were applied to ensure the inclusion of high-quality,peer-reviewed studies.Data extraction and quality assessment were performed independently by two reviewers.RESULTS Ten studies,comprising 6 case reports,3 case series,and 1 cohort study,met the inclusion criteria.Ivabradine doses ranged from 0.025 to 0.28 mg/kg/dose,administered either as monotherapy or in combination with various antiar-rhythmic medications.Overall,ivabradine demonstrated promising results in achieving HR control,conversion to sinus rhythm,or stabilization of junctional rhythm.No significant adverse effects related to ivabradine were reported.CONCLUSION The available evidence suggests that ivabradine may be an effective adjunctive therapy or,in some cases,a potential monotherapy for the management of CJET,particularly in cases refractory to traditional antiarrhythmic medications.However,the current evidence is limited by the small sample sizes and retrospective nature of the included studies.Well-designed prospective studies with larger cohorts and longer follow-up periods are warranted to further elucidate the role of ivabradine in CJET management.展开更多
Zinc oxide(ZnO),as a broadband gap semiconductor material,exhibits unique physical and chemical properties that make it highly suitable for optoelectronics,piezoelectric devices,and gas-sensitive sensors,showing signi...Zinc oxide(ZnO),as a broadband gap semiconductor material,exhibits unique physical and chemical properties that make it highly suitable for optoelectronics,piezoelectric devices,and gas-sensitive sensors,showing significant potential for various applications.This paper focuses on the regulation and application of ZnO-based p-n junctions and piezoelectric devices.It discusses in detail the preparation of ZnO materials,the construction of p-n junctions,the optimization of piezoelectric device performance,and its application in various fields.By employing different preparation methods and strategies,high-quality ZnO thin films can be grown,and effective control of p-type conductivity achieved.This study provides both a theoretical foundation and technical support for controlling the performance of ZnO-based piezoelectric devices,as well as paving new pathways for the broader application of ZnO materials.展开更多
Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pa...Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pathological factor contributing to the progression of sarcopenia.However,the morphological and functional changes in mitochondria and their interplay in the degeneration of the neuromuscular junction during aging remain poorly understood.A defined systematic search of the Pub Med,Web of Science and Embase databases(last accessed on October 30,2024)was conducted with search terms including'mitochondria','aging'and'NMJ'.Clinical and preclinical studies of mitochondrial dysfunction and neuromuscular junction degeneration during aging.Twentyseven studies were included in this systematic review.This systematic review provides a summary of morphological,functional and biological changes in neuromuscular junction,mitochondrial morphology,biosynthesis,respiratory chain function,and mitophagy during aging.We focus on the interactions and mechanisms underlying the relationship between mitochondria and neuromuscular junctions during aging.Aging is characterized by significant reductions in mitochondrial fusion/fission cycles,biosynthesis,and mitochondrial quality control,which may lead to neuromuscular junction dysfunction,denervation and poor physical performance.Motor nerve terminals that exhibit redox sensitivity are among the first to exhibit abnormalities,ultimately leading to an early decline in muscle strength through impaired neuromuscular junction transmission function.Parg coactivator 1 alpha is a crucial molecule that regulates mitochondrial biogenesis and modulates various pathways,including the mitochondrial respiratory chain,energy deficiency,oxidative stress,and inflammation.Mitochondrial dysfunction is correlated with neuromuscular junction denervation and acetylcholine receptor fragmentation,resulting in muscle atrophy and a decrease in strength during aging.Physical therapy,pharmacotherapy,and gene therapy can alleviate the structural degeneration and functional deterioration of neuromuscular junction by restoring mitochondrial function.Therefore,mitochondria are considered potential targets for preserving neuromuscular junction morphology and function during aging to treat sarcopenia.展开更多
In the rapidly evolving field of modern technology,near-infrared(NIR)photodetectors are extremely crucial for efficient and reliable optical communications.The graphene/GaAs Schottky junction photodetector leverages g...In the rapidly evolving field of modern technology,near-infrared(NIR)photodetectors are extremely crucial for efficient and reliable optical communications.The graphene/GaAs Schottky junction photodetector leverages graphene’s exceptional carrier mobility and broadband absorption,coupled with GaAs’s strong absorption in the NIR spectrum,to achieve high responsivity and rapid response times.Here,we present a NIR photodetector employing a graphene/GaAs Schottky junction tailored for communication wavelengths.We fabricated high-performance graphene/GaAs Schottky junction devices with interdigitated electrodes of varying finger widths,systematically investigating their impact on device performance.The experimental results demonstrate that incorporating interdigitated electrodes significantly enhances the collection efficiency of photogenerated carriers in graphene/GaAs photodetectors.When illuminated by 808 nm NIR light at an intensity of 7.23 mW/cm^(2),the device achieves an impressive switch ratio of 10^(7),along with a high responsivity of 40.1 mA/W and a remarkable detectivity of 2.89×10^(13)Jones.Additionally,the device is characterized by rapid response times,with rise and fall times of 18.5 and 17.5μs,respectively,at a 3 dB bandwidth.These findings underscore the significant potential of high-performance graphene/GaAs photodetectors for applications in NIR optoelectronic systems.展开更多
Nitrate pollution poses a significant environmental challenge,and photocatalytic nitrate reduction has garnered considerable attention due to its efficiency and environmental advantages.Among these,the development of ...Nitrate pollution poses a significant environmental challenge,and photocatalytic nitrate reduction has garnered considerable attention due to its efficiency and environmental advantages.Among these,the development of Schottky junctions shows considerable potential for practical applications.However,the impact of metal nanoparticle size within Schottky junctions on photocatalytic nitrate reduction remains largely unexplored.In this study,we propose a novel method to modulate metal nanoparticle size within Schottky junctions by controlling light intensity during the photodeposition process.Smaller Au nanoparticles were found to enhance electron accumulation at active sites by promoting charge transfer from COF to Au,thereby improving internal electron transport.Additionally,the Schottky barrier effectively suppressed reverse electron transfer while enhancing NO_(3)^(–)adsorption and activation.The Au_(2-)COF exhibited remarkable nitrate reduction performance,achieving an ammonia yield of 382.48μmol g^(–1)h^(–1),5.7 times higher than that of pure COF.This work provides novel theoretical and practical insights into using controlled light intensity to regulate metal nanoparticle size within Schottky junctions,thereby enhancing photocatalytic nitrate reduction.展开更多
Rational engineering of semiconductor photocatalysts for efficient hydrogen production is of great significance but still challenging,primarily due to the limitations in charge transfer kinetics.Herein,a fascinating p...Rational engineering of semiconductor photocatalysts for efficient hydrogen production is of great significance but still challenging,primarily due to the limitations in charge transfer kinetics.Herein,a fascinating plasmonic tandem heterojunction with the hc-CdS/Mo_(2)C@C heterostructure is aimfully prepared for effectively promoting the charge separation kinetics of the CdS photocatalyst via the synergistic strategy of phase junction,Schottky junction,and photothermal effect.The difference in atomic configuration between cubic-CdS (c-CdS) and hexagonal-CdS (h-CdS) leads to effective charge separation through a typical Ⅱ charge transfer mechanism,and plasmonic Schottky junction further extracts the electrons in the hc-CdS phase junction to realize gradient charge transfer.Besides,the photothermal effect of Mo_(2)C@C helps to expand the light absorption,accelerate charge transfer kinetics,and reduce the hydrogen evolution energy barrier.The carbon layer provides a fast channel for charge transfer and protects the photocatalyst from photocorrosion.As a result,the optimized hc-CMC photocatalyst exhibits a significantly high photocatalytic H_(2)production activity of 28.63 mmol/g/h and apparent quantum efficiency of 61.8%,surpassing most of the reported photocatalysts.This study provides a feasible strategy to enhance the charge transfer kinetics and photocatalytic activity of CdS by constructing plasmonic tandem heterogeneous junctions.展开更多
The electron-doped cuprate superconductor exhibits a unique electronic structure,where both electron and hole Fermi surface(FS)pockets coexist in the optimally doped(OP)region,while in the overdoped(OD)region there ex...The electron-doped cuprate superconductor exhibits a unique electronic structure,where both electron and hole Fermi surface(FS)pockets coexist in the optimally doped(OP)region,while in the overdoped(OD)region there exists only a large hole FS pocket.It is therefore an intriguing question whether or not a p-n junction arises if the OD electron-doped cuprate interfaces with the OP compound.Here,we construct such an in-plane junction by selectively modulating the doping levels in thin films of La_(2-x)Ce_(x)CuO_(4)(LCCO)—a typical electron-doped cuprate.We find that the junction exhibits non-linear,asymmetricⅠ-Ⅴcharacteristics,which are consistent with those of a p-n semiconductor junction,across a wide temperature range from 250 K to 10 K,regardless of the Hall coefficient sign change or the superconducting transition.We attribute these features to a potential barrier formed at the junction,which is set by the band bending in both OD and OP LCCO.展开更多
Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature ...Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature extraction remains a bottleneck in the development of efficient clustering methods.In this regard,extensive research over the past two decades has focused on feature engineering and dimensionality reduction in break junction conductance.However,extracting highly relevant features without expert knowledge remains an unresolved challenge.To address this issue,we propose a deep clustering method driven by task-oriented representation learning(CTRL)in which the clustering module serves as a guide for the representation learning(RepL)module.First,we determine an optimal autoencoder(AE)structure through a neural architecture search(NAS)to ensure efficient RepL;second,the RepL process is guided by a joint training strategy that combines AE reconstruction loss with the clustering objective.The results demonstrate that CTRL achieves excellent performance on both the generated and experimental data.Further inspection of the RepL step reveals that joint training robustly learns more compact features than the unconstrained AE or traditional dimensionality reduction methods,significantly reducing misclustering possibilities.Our method provides a general end-to-end automatic clustering solution for analyzing single-molecule break junction data.展开更多
BACKGROUND Gastroesophageal junction(GEJ)or gastrointestinal stromal tumor(GIST)are located in unfavorable parts of the stomach,due to the anatomical complexity of these regions,protecting the cardia while ensuring R0...BACKGROUND Gastroesophageal junction(GEJ)or gastrointestinal stromal tumor(GIST)are located in unfavorable parts of the stomach,due to the anatomical complexity of these regions,protecting the cardia while ensuring R0 resection is a major challenge for surgeons.CASE SUMMARY Two cases of GEJ stromal tumors were reported.Abdominal computed tomography scans revealed that both tumors were located at the GEJ,close to the posterior wall,with one tumor measuring greater than 5 cm.Both patients successfully underwent robot-assisted laparoscopic wedge resection of the stomach.The surgeries achieved R0 resection while preserving the cardia sphincter and maximizing gastric tissue preservation.Postoperatively,no symptoms such as gastroesophageal reflux or cardia stenosis were observed.Case 1:Postoperative pathology:GIST.Immunohistochemical results:Tumor cells were positive for CD34,CD117,and DOG1,and negative for SMA,desmin,S-100,and SDHB(normal expression).The Ki-67 proliferation index was approximately 5%.Case 2:Postoperative pathology:GIST.Immunohistochemical results:Tumor cells were positive for CD117(++),CD34(++),DOG1(+++),and focal positivity for SMA.Negative for desmin,S-100(few cells positive),and SDHB(preserved expression).The Ki-67 proliferation index was approximately 10%.CONCLUSION The gastric tube-guided robotic-assisted laparoscopic resection is a safe and effective method for tumor resection while preserving the cardia,and it is worth further promotion in clinical practice.展开更多
BACKGROUND Adenocarcinoma of the esophagogastric junction(AEG)has distinct malignant features compared with other esophageal and gastric cancers.Its management is controversial and largely influenced by tumor location...BACKGROUND Adenocarcinoma of the esophagogastric junction(AEG)has distinct malignant features compared with other esophageal and gastric cancers.Its management is controversial and largely influenced by tumor location and esophageal involve-ment.Hence,understanding the clinicopathological characteristics and prognosis of AEG is essential for optimizing treatment strategies.AIM To evaluate the prognosis and clinicopathological features of patients with AEG,providing insights for management strategies.METHODS This retrospective study analyzed cases with AEG admitted between January 2016 and December 2017.Patients meeting the inclusion criteria were categorized into three groups:Type E[tumors whose center was located within 5 cm above the esophagogastric junction(EGJ)];Type Eg(tumors whose center was situated within 2 cm below the EGJ),with a 2-cm esophageal invasion;Type Ge(tumors whose center was situated within 2 cm below the EGJ),with an esophageal in-vasion of<2 cm,based on tumor location and esophageal involvement.Then,clinicopathological characteristics and survival outcomes of the groups were compared to evaluate the predictive value of the American Joint Committee on Cancer/International Alliance against Cancer 8th edition gastric cancer and eso-phageal adenocarcinoma staging systems.Statistical analysis included survival analysis and Cox regression to assess prognostic factors.RESULTS Totally,153 patients with AEG were included(median follow up:41.1 months;22,31,and 100 patients from type E,Eg,and Ge,respectively),with significant differences in maximum tumor length,esophageal involvement length,tumor type,pathology,differentiation,depth of invasion,and lymph node metastasis between the groups(P<0.05).Lymph node metastasis rates at stations 1,2,3,and 7 were lower in type E than in Eg and Ge(P<0.05).Survival rates for type E(45.5%)were significantly lower than those for Eg(48.4%)and Ge(73.0%)(P=0.001).Type E tumors,vascular infiltration,T3-T4 invasion depth,and lymph node metastasis,were identified as independent prognostic factors(P<0.05).The gastric cancer staging system outperformed the esophageal adenocarcinoma system for type Ge tumors.CONCLUSION Clinicopathological characteristics and prognoses varied between the AEG groups,with type E demonstrating distinct features.The gastric cancer staging system more accurately predicted type Ge AEG prognosis,guiding clinical decision-making.展开更多
The forming processes of 4,40-dipyridyl-based single-molecule junctions and mechanically induced conductance switching as well as the side-group effects are systematically investigated by applying the ab initio-based ...The forming processes of 4,40-dipyridyl-based single-molecule junctions and mechanically induced conductance switching as well as the side-group effects are systematically investigated by applying the ab initio-based adiabatic geometric optimization method and the one-dimensional transmission combined with three-dimensional correction approximation(OTCTCA)method.The numerical results show that for the 4,40-dipyridyl with a p-conjugated phenyl-phosphoryl or diphenylsilyl side group,the pyridyl vertically anchors on the second atomic layer of the pyramid-shaped Au tip electrode at small inter-electrode distances by laterally pushing the apical Au atom aside,which induces stronger pyridyl-electrode coupling and high-conductance state of the formed junctions.As the inter-electrode distance increases,the pyridyl shifts to the apical Au atom of the tip electrode.This apical Au atom introduces additional scatterings to the tunneling electrons and significantly decreases the conductance of the junctions.Furthermore,for the 4,40-dipyridyl with a phenyl-phosphoryl side group,the probability of manifesting the high-conductance state is decreased due to the oxygen atom reducing the probability of the pyridyl adsorbing on the second layer of Au tip electrode.In contrast,for the 4,40-dipyridyl with a nonconjugated cyclohexyl-phosphoryl side group,the steric hindrance from the bulky cyclohexyl group leads the molecule to preferentially form the O-Au contact,which prevents both the high conductance and mechanically induced conductance switching of the junction.Our results provide a theoretical understanding of the side-group effects on electronic transport properties of single-molecule junctions,offering an alternative explanation for the experimental observations.展开更多
Aim:The aim of this study was to investigate the factors affecting treatment success in children that got either pyeloplasty or J stent placement in ureteropelvic junction obstruction(UPJO).Patients and Methods:The st...Aim:The aim of this study was to investigate the factors affecting treatment success in children that got either pyeloplasty or J stent placement in ureteropelvic junction obstruction(UPJO).Patients and Methods:The study comprised 126 patients who either J stent placement or pyeloplasty performed by the same physician for UPJO from 2012 to 2022.The criteria for surgical intervention adhered to the European Association of Urology(EAU)recommendations.Symptomatic patients with verified obstruction,with a split renal function(SRF)over 40%,low-grade hydronephrosis(Society of Fetal Urology grade 2),and an obstructive segment measuring less than 1 cm,had Double-J stent placement.Furthermore,in infants exhibiting poor health or development retardation,a J stent was inserted as a temporary measure to alleviate obstruction and maintain renal function,notwithstanding the recommendation for pyeloplasty.Results:The treatment success rate was 43.9%in the J stent group and 88.4%in the pyeloplasty group,with a statistically significant difference(p<0.001).The kind of procedure(pyeloplasty vs.stent)was the sole independent prognostic factor predicting treatment success(HR:4.77,p<0.001)in the multiple logistic regression analysis.No statistically significant change was observed in preoperative and postoperative SRF(48%vs.48.5%,p=0.923)among patients with stent failure,confirming a transient preservation of functional advantage.Conclusion:The placement of a stent may have restricted success rates in specific patients with UPJO.Preserving renal function may be advantageous until definitive surgery,particularly in cases where there are hazards associated with anesthesia and invasive procedures.展开更多
This article primarily establishes a two-soliton system and employs the Lewis-Riesenfeld invariant inverse control method to achieve shortcuts to adiabaticity(STA)technology.We study an atomic soliton Josephson juncti...This article primarily establishes a two-soliton system and employs the Lewis-Riesenfeld invariant inverse control method to achieve shortcuts to adiabaticity(STA)technology.We study an atomic soliton Josephson junctions(SJJs)device and subsequently compare and analyze it with atomic bosonic Josephson junctions.Moreover,we use higher-order expressions of the auxiliary equations to optimize the results and weaken the detrimental effect of the sloshing amplitude.We find that in the adiabatic shortcut evolution of two systems with time-containing tunnelling rates,the SJJs system is more robust over a rather short time evolution.In comparison with linear ramping,the STA technique is easier to achieve with the precise modulation of the quantum state in the SJJs system.展开更多
Magnetic skyrmions are recognized as potential information carriers for building the next-generation spintronic memory and logic devices.Towards functional device applications,efficient electrical detection of skyrmio...Magnetic skyrmions are recognized as potential information carriers for building the next-generation spintronic memory and logic devices.Towards functional device applications,efficient electrical detection of skyrmions at room temperature is one of the most important prerequisites.展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFB3505301)the National Key R&D Program of Shanxi Province(Grant No.202302050201014)+1 种基金the National Natural Science Foundation of China(Grant No.12304148)the Natural Science Basic Research Program of Shanxi Province(Grant No.202203021222219)。
文摘Multiferroic tunnel junctions(MFTJs),which combine tunneling magnetoresistance(TMR)and electroresistance(TER)efects,have emerged as key candidates for data storage.Two-dimensional van der Waals(vdW)MFTJs,in particular,are promising spintronic devices for the post-Moore era.However,these vdW MFTJs are typically based on multiferroics composed of ferromagnetic and ferroelectric materials or multilayer magnetic materials with sliding ferroelectricity,which increases device fabrication complexity.In this work,we design a vdW MFTJ using bilayer MoPtGe_(2)S_(6),a material with homologous multiferroicity in each monolayer,combined with symmetric PtTe_(2)electrodes.Using frst-principles calculations based on density functional theory and nonequilibrium Green's functions,we theoretically explore the spin-polarized electronic transport properties of this MFTJ.By controlling the ferroelectric and ferromagnetic polarization directions of bilayer MoPtGe_(2)S_(6),the MFTJ can exhibit six distinct non-volatile resistance states,with maximum TMR(137%)and TER(1943%)ratios.Under biaxial strain,TMR and TER can increase to 265%and 4210%,respectively.The TER ratio also increases to 2186%under a 0.1 V bias voltage.Remarkably,the MFTJ exhibits a pronounced spin-fltering and a signifcant negative diferential resistance efect.These fndings not only highlight the potential of monolayer multiferroic MoPtGe_(2)S_(6)for MFTJs but also ofer valuable theoretical insights for future experimental investigations.
基金funded by the Major Research Plan of the National Natural Science Foundation of China(No.92159202)the National Key Research and Development Program of China(No.2021YFA1100500)+1 种基金the Leading Innovation Team Project of Hangzhou Medical College(No.CXLJ202401)the Key Research and Development Plan of Zhejiang Provincial Department of Science and Technology(No.2024C03051)。
文摘Objective:Cytotoxic T lymphocytes(CTLs)play a crucial role in the therapeutic approach to hepatocellular carcinoma(HCC).Recent research has indicated that junctional adhesion molecule-like protein(JAML)enhances the antitumor activity of CD8+T cells.Our study investigates the role of JAML+CD8+T cells in HCC.Methods:We utilized time-of-flight mass cytometry and an orthotopic mouse model of HCC to examine histone modifications in tumor-infiltrating immune cells undergoing immunotherapy.Flow cytometry was used to assess CD4+T cells differentiation and JAML expression in CD8+T cells infiltrating HCC.Correlation analysis revealed a strong positive correlation between lactate dehydrogenase A+(LDHA+)CD4+T cells and JAML+CD8+T cells.Subsequently,we evaluated the therapeutic effects of an agonistic anti-JAML antibody,both alone and combined with immunotherapy.Finally,RNA sequencing was conducted to identify potential regulatory mechanisms.Results:Immunotherapy significantly increased the percentage of CD8+T cells infiltrating HCC and induced histone modifications,such as H3K18 lactylation(H3K18la)in CD4+T cells.Flow cytometry analysis revealed that lactate promotes the differentiation of CD4+T cells into Th1 cells.LDHA,an enzyme that converts pyruvate to lactate,plays a key role in this process.Correlation analysis revealed a strong positive relationship between LDHA+CD4+T cells and JAML+CD8+T cells in patients who responded to immunotherapy.Moreover,high JAML expression in CD8+T cells was associated with a more favorable prognosis.In vivo experiments demonstrated that agonistic anti-JAML antibody therapy reduced tumor volume and significantly prolonged the survival of tumor-bearing mice,independent of the effects of anti-programmed cell death protein ligand-1 antibody(αPD-L1)-mediated immunotherapy.Pathway enrichment analysis further revealed that JAML enhances CTL responses through the oxidative phosphorylation pathway.Conclusions:Activation of JAML enhances CTL responses in HCC treatment,independent ofαPD-L1-mediated immunotherapy,providing a promising strategy for advanced HCC.
基金the support from the National Natural Science Foundation of China(52202306)Program from Guangdong Introducing Innovative and Entrepreneurial Teams(2019ZT08L101 and RCTDPT-2020-001)+1 种基金Shenzhen Key Laboratory of Eco-materials and Renewable Energy(ZDSYS20200922160400001)the Provincial Talent Plan of Guangdong(2023TB0012).
文摘Methane(CH4),the predominant component of natural gas and shale gas,is regarded as a promising carbon feedstock for chemical synthesis[1].However,considering the extreme stability of CH4 molecules,it's quite challenging in simultaneously achieving high activity and selectivity for target products under mild conditions,especially when synthesizing high-value C2t chemicals such as ethanol[2].The conversion of methane to ethanol by photocatalysis is promising for achieving transformation under ambient temperature and pressure conditions.Currently,the apparent quantum efficiency(AQE)of solar-driven methane-to-ethanol conversion is generally below 0.5%[3,4].Furthermore,the stability of photocatalysts remains inadequate,offering substantial potential for further improvement.
基金supported by the German Research Council(Deutsche Forschungsgemeinschaft,HA3309/3-1/2,HA3309/6-1,HA3309/7-1)。
文摘Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.
文摘This study examines the influence of magnetic field and temperature on the transient voltage of a polycrystalline silicon radial junction solar cell in a dynamic regime under multispectral illumination. Radial junction solar cells represent a major advancement in photovoltaic technologies, as they optimize light absorption and charge collection efficiency. The focus is on the impact of the magnetic field and temperature on the decay of transient voltage, which provides crucial information on recombination processes and the lifetime of minority carriers. The results reveal that the magnetic field tends to increase the transient voltage by directly affecting the transient electron density. Indeed, for B > 7 × 10−5 T, the magnetic field prolongs the relaxation time by increasing the transient voltage amplitude. Additionally, rising temperatures accelerate (ranging from 290 K to 450 K) recombination processes, thereby reducing the transient voltage, although this effect is moderated by the presence of a magnetic field. The study highlights the complex interaction between magnetic field and temperature, with significant impacts on the transient behaviour.
基金supported by the National Natural Science Foundation of China(grants 31972908,81991500,81991502,and 32030010)Beijing Natural Science Foundation(grant 7202082).
文摘Tricellulin,a key tricellular tight junction(TJ)protein,is essential for maintaining the barrier integrity of acinar epithelia against macromolecular passage in salivary glands.This study aims to explore the role and regulatory mechanism of tricellulin in the development of salivary gland hypofunction in Sjögren’s syndrome(SS).Employing a multifaceted approach involving patient biopsies,non-obese diabetic(NOD)mice as a SS model,salivary gland acinar cell-specific tricellulin conditional knockout(TricCKO)mice,and IFN-γ-stimulated salivary gland epithelial cells,we investigated the role of tricellulin in SS-related hyposalivation.Our data revealed diminished levels of tricellulin in salivary glands of SS patients.Similarly,NOD mice displayed a reduction in tricellulin expression from the onset of the disease,concomitant with hyposecretion and an increase in salivary albumin content.Consistent with these findings,TricCKO mice exhibited both hyposecretion and leakage of macromolecular tracers when compared to control animals.Mechanistically,the JAK/STAT1/miR-145 axis was identified as mediating the IFN-γ-induced downregulation of tricellulin.Treatment with AT1001,a TJ sealer,ameliorated epithelial barrier dysfunction,restored tricellulin expression,and consequently alleviated hyposalivation in NOD mice.Importantly,treatment with miR-145 antagomir to specifically recover the expression of tricellulin in NOD mice significantly alleviated hyposalivation and macromolecular leakage.Collectively,we identified that tricellulin deficiency in salivary glands contributed to hyposalivation in SS.Our findings highlight tricellulin as a potential therapeutic target for hyposecretion,particularly in the context of reinforcing epithelial barrier function through preventing leakage of macromolecules in salivary glands.
文摘BACKGROUND Congenital junctional ectopic tachycardia(CJET)is a rare but life-threatening arrhythmia in neonates and infants,often refractory to conventional antiar-rhythmic therapy.Ivabradine,a selective inhibitor of hyperpolarization-activated cyclic nucleotide-gated channels,has emerged as a promising drug for CJET management.AIM To evaluate the efficacy and safety of ivabradine in the management of CJET.Specifically,this study aims to analyze the dosing strategies,treatment outcomes,and the role of ivabradine as monotherapy or adjunct therapy in patients who have previously received other antiarrhythmic medications.Additionally,this review seeks to assess the impact of ivabradine on heart rate(HR)control,rhythm conversion,and its overall safety profile to provide evidence-based insights into its clinical use for CJET management.METHODS This systematic review aims to evaluate the outcomes of ivabradine,either as monotherapy or as an adjunctive therapy,in the treatment of CJET.A compre-hensive literature search was conducted across multiple electronic databases to identify relevant studies investigating the use of ivabradine in CJET.Stringent inclusion and exclusion criteria were applied to ensure the inclusion of high-quality,peer-reviewed studies.Data extraction and quality assessment were performed independently by two reviewers.RESULTS Ten studies,comprising 6 case reports,3 case series,and 1 cohort study,met the inclusion criteria.Ivabradine doses ranged from 0.025 to 0.28 mg/kg/dose,administered either as monotherapy or in combination with various antiar-rhythmic medications.Overall,ivabradine demonstrated promising results in achieving HR control,conversion to sinus rhythm,or stabilization of junctional rhythm.No significant adverse effects related to ivabradine were reported.CONCLUSION The available evidence suggests that ivabradine may be an effective adjunctive therapy or,in some cases,a potential monotherapy for the management of CJET,particularly in cases refractory to traditional antiarrhythmic medications.However,the current evidence is limited by the small sample sizes and retrospective nature of the included studies.Well-designed prospective studies with larger cohorts and longer follow-up periods are warranted to further elucidate the role of ivabradine in CJET management.
基金The Natural Science Foundation of Guangdong Province(Project No.2023A1515012352)。
文摘Zinc oxide(ZnO),as a broadband gap semiconductor material,exhibits unique physical and chemical properties that make it highly suitable for optoelectronics,piezoelectric devices,and gas-sensitive sensors,showing significant potential for various applications.This paper focuses on the regulation and application of ZnO-based p-n junctions and piezoelectric devices.It discusses in detail the preparation of ZnO materials,the construction of p-n junctions,the optimization of piezoelectric device performance,and its application in various fields.By employing different preparation methods and strategies,high-quality ZnO thin films can be grown,and effective control of p-type conductivity achieved.This study provides both a theoretical foundation and technical support for controlling the performance of ZnO-based piezoelectric devices,as well as paving new pathways for the broader application of ZnO materials.
基金supported by grants from Collaborative Research Fund(Ref:C4032-21GF)General Research Grant(Ref:14114822)+1 种基金Group Research Scheme(Ref:3110146)Area of Excellence(Ref:Ao E/M-402/20)。
文摘Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pathological factor contributing to the progression of sarcopenia.However,the morphological and functional changes in mitochondria and their interplay in the degeneration of the neuromuscular junction during aging remain poorly understood.A defined systematic search of the Pub Med,Web of Science and Embase databases(last accessed on October 30,2024)was conducted with search terms including'mitochondria','aging'and'NMJ'.Clinical and preclinical studies of mitochondrial dysfunction and neuromuscular junction degeneration during aging.Twentyseven studies were included in this systematic review.This systematic review provides a summary of morphological,functional and biological changes in neuromuscular junction,mitochondrial morphology,biosynthesis,respiratory chain function,and mitophagy during aging.We focus on the interactions and mechanisms underlying the relationship between mitochondria and neuromuscular junctions during aging.Aging is characterized by significant reductions in mitochondrial fusion/fission cycles,biosynthesis,and mitochondrial quality control,which may lead to neuromuscular junction dysfunction,denervation and poor physical performance.Motor nerve terminals that exhibit redox sensitivity are among the first to exhibit abnormalities,ultimately leading to an early decline in muscle strength through impaired neuromuscular junction transmission function.Parg coactivator 1 alpha is a crucial molecule that regulates mitochondrial biogenesis and modulates various pathways,including the mitochondrial respiratory chain,energy deficiency,oxidative stress,and inflammation.Mitochondrial dysfunction is correlated with neuromuscular junction denervation and acetylcholine receptor fragmentation,resulting in muscle atrophy and a decrease in strength during aging.Physical therapy,pharmacotherapy,and gene therapy can alleviate the structural degeneration and functional deterioration of neuromuscular junction by restoring mitochondrial function.Therefore,mitochondria are considered potential targets for preserving neuromuscular junction morphology and function during aging to treat sarcopenia.
基金supported by the National Natural Science Foundation of China(62375279)Suzhou Industrial Science and Technology Program(SYG202340,SJC2023004)Distinguished Young Scholar Fund of Natural Science Foundation of Jiangsu Province(BK20240125).
文摘In the rapidly evolving field of modern technology,near-infrared(NIR)photodetectors are extremely crucial for efficient and reliable optical communications.The graphene/GaAs Schottky junction photodetector leverages graphene’s exceptional carrier mobility and broadband absorption,coupled with GaAs’s strong absorption in the NIR spectrum,to achieve high responsivity and rapid response times.Here,we present a NIR photodetector employing a graphene/GaAs Schottky junction tailored for communication wavelengths.We fabricated high-performance graphene/GaAs Schottky junction devices with interdigitated electrodes of varying finger widths,systematically investigating their impact on device performance.The experimental results demonstrate that incorporating interdigitated electrodes significantly enhances the collection efficiency of photogenerated carriers in graphene/GaAs photodetectors.When illuminated by 808 nm NIR light at an intensity of 7.23 mW/cm^(2),the device achieves an impressive switch ratio of 10^(7),along with a high responsivity of 40.1 mA/W and a remarkable detectivity of 2.89×10^(13)Jones.Additionally,the device is characterized by rapid response times,with rise and fall times of 18.5 and 17.5μs,respectively,at a 3 dB bandwidth.These findings underscore the significant potential of high-performance graphene/GaAs photodetectors for applications in NIR optoelectronic systems.
文摘Nitrate pollution poses a significant environmental challenge,and photocatalytic nitrate reduction has garnered considerable attention due to its efficiency and environmental advantages.Among these,the development of Schottky junctions shows considerable potential for practical applications.However,the impact of metal nanoparticle size within Schottky junctions on photocatalytic nitrate reduction remains largely unexplored.In this study,we propose a novel method to modulate metal nanoparticle size within Schottky junctions by controlling light intensity during the photodeposition process.Smaller Au nanoparticles were found to enhance electron accumulation at active sites by promoting charge transfer from COF to Au,thereby improving internal electron transport.Additionally,the Schottky barrier effectively suppressed reverse electron transfer while enhancing NO_(3)^(–)adsorption and activation.The Au_(2-)COF exhibited remarkable nitrate reduction performance,achieving an ammonia yield of 382.48μmol g^(–1)h^(–1),5.7 times higher than that of pure COF.This work provides novel theoretical and practical insights into using controlled light intensity to regulate metal nanoparticle size within Schottky junctions,thereby enhancing photocatalytic nitrate reduction.
基金National Natural Science Foundation of China (Nos. 22371165, 22209098 and 21971143)111 Project (D20015)Opening Found of Hubei Three Gorges Laboratory (SC232001, SK213002)。
文摘Rational engineering of semiconductor photocatalysts for efficient hydrogen production is of great significance but still challenging,primarily due to the limitations in charge transfer kinetics.Herein,a fascinating plasmonic tandem heterojunction with the hc-CdS/Mo_(2)C@C heterostructure is aimfully prepared for effectively promoting the charge separation kinetics of the CdS photocatalyst via the synergistic strategy of phase junction,Schottky junction,and photothermal effect.The difference in atomic configuration between cubic-CdS (c-CdS) and hexagonal-CdS (h-CdS) leads to effective charge separation through a typical Ⅱ charge transfer mechanism,and plasmonic Schottky junction further extracts the electrons in the hc-CdS phase junction to realize gradient charge transfer.Besides,the photothermal effect of Mo_(2)C@C helps to expand the light absorption,accelerate charge transfer kinetics,and reduce the hydrogen evolution energy barrier.The carbon layer provides a fast channel for charge transfer and protects the photocatalyst from photocorrosion.As a result,the optimized hc-CMC photocatalyst exhibits a significantly high photocatalytic H_(2)production activity of 28.63 mmol/g/h and apparent quantum efficiency of 61.8%,surpassing most of the reported photocatalysts.This study provides a feasible strategy to enhance the charge transfer kinetics and photocatalytic activity of CdS by constructing plasmonic tandem heterogeneous junctions.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1403100)the National Natural Science Foundation of China(Grant Nos.52388201,12361141820,and 12274249)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302400)。
文摘The electron-doped cuprate superconductor exhibits a unique electronic structure,where both electron and hole Fermi surface(FS)pockets coexist in the optimally doped(OP)region,while in the overdoped(OD)region there exists only a large hole FS pocket.It is therefore an intriguing question whether or not a p-n junction arises if the OD electron-doped cuprate interfaces with the OP compound.Here,we construct such an in-plane junction by selectively modulating the doping levels in thin films of La_(2-x)Ce_(x)CuO_(4)(LCCO)—a typical electron-doped cuprate.We find that the junction exhibits non-linear,asymmetricⅠ-Ⅴcharacteristics,which are consistent with those of a p-n semiconductor junction,across a wide temperature range from 250 K to 10 K,regardless of the Hall coefficient sign change or the superconducting transition.We attribute these features to a potential barrier formed at the junction,which is set by the band bending in both OD and OP LCCO.
基金supported by Guangxi Science and Technology Program(No.GuiKeAD23026291)Guangxi Science and Technology Major Project(No.AA22068057).
文摘Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature extraction remains a bottleneck in the development of efficient clustering methods.In this regard,extensive research over the past two decades has focused on feature engineering and dimensionality reduction in break junction conductance.However,extracting highly relevant features without expert knowledge remains an unresolved challenge.To address this issue,we propose a deep clustering method driven by task-oriented representation learning(CTRL)in which the clustering module serves as a guide for the representation learning(RepL)module.First,we determine an optimal autoencoder(AE)structure through a neural architecture search(NAS)to ensure efficient RepL;second,the RepL process is guided by a joint training strategy that combines AE reconstruction loss with the clustering objective.The results demonstrate that CTRL achieves excellent performance on both the generated and experimental data.Further inspection of the RepL step reveals that joint training robustly learns more compact features than the unconstrained AE or traditional dimensionality reduction methods,significantly reducing misclustering possibilities.Our method provides a general end-to-end automatic clustering solution for analyzing single-molecule break junction data.
基金Supported by Jiangsu Provincial Administration of Traditional Chinese Medicine,No.MS2023017 and No.SLJ0311the Jiangsu Provincial Health Commission,No.ZDXK202251.
文摘BACKGROUND Gastroesophageal junction(GEJ)or gastrointestinal stromal tumor(GIST)are located in unfavorable parts of the stomach,due to the anatomical complexity of these regions,protecting the cardia while ensuring R0 resection is a major challenge for surgeons.CASE SUMMARY Two cases of GEJ stromal tumors were reported.Abdominal computed tomography scans revealed that both tumors were located at the GEJ,close to the posterior wall,with one tumor measuring greater than 5 cm.Both patients successfully underwent robot-assisted laparoscopic wedge resection of the stomach.The surgeries achieved R0 resection while preserving the cardia sphincter and maximizing gastric tissue preservation.Postoperatively,no symptoms such as gastroesophageal reflux or cardia stenosis were observed.Case 1:Postoperative pathology:GIST.Immunohistochemical results:Tumor cells were positive for CD34,CD117,and DOG1,and negative for SMA,desmin,S-100,and SDHB(normal expression).The Ki-67 proliferation index was approximately 5%.Case 2:Postoperative pathology:GIST.Immunohistochemical results:Tumor cells were positive for CD117(++),CD34(++),DOG1(+++),and focal positivity for SMA.Negative for desmin,S-100(few cells positive),and SDHB(preserved expression).The Ki-67 proliferation index was approximately 10%.CONCLUSION The gastric tube-guided robotic-assisted laparoscopic resection is a safe and effective method for tumor resection while preserving the cardia,and it is worth further promotion in clinical practice.
基金Supported by the Medical Science Research Project of Hebei,No.20211323.
文摘BACKGROUND Adenocarcinoma of the esophagogastric junction(AEG)has distinct malignant features compared with other esophageal and gastric cancers.Its management is controversial and largely influenced by tumor location and esophageal involve-ment.Hence,understanding the clinicopathological characteristics and prognosis of AEG is essential for optimizing treatment strategies.AIM To evaluate the prognosis and clinicopathological features of patients with AEG,providing insights for management strategies.METHODS This retrospective study analyzed cases with AEG admitted between January 2016 and December 2017.Patients meeting the inclusion criteria were categorized into three groups:Type E[tumors whose center was located within 5 cm above the esophagogastric junction(EGJ)];Type Eg(tumors whose center was situated within 2 cm below the EGJ),with a 2-cm esophageal invasion;Type Ge(tumors whose center was situated within 2 cm below the EGJ),with an esophageal in-vasion of<2 cm,based on tumor location and esophageal involvement.Then,clinicopathological characteristics and survival outcomes of the groups were compared to evaluate the predictive value of the American Joint Committee on Cancer/International Alliance against Cancer 8th edition gastric cancer and eso-phageal adenocarcinoma staging systems.Statistical analysis included survival analysis and Cox regression to assess prognostic factors.RESULTS Totally,153 patients with AEG were included(median follow up:41.1 months;22,31,and 100 patients from type E,Eg,and Ge,respectively),with significant differences in maximum tumor length,esophageal involvement length,tumor type,pathology,differentiation,depth of invasion,and lymph node metastasis between the groups(P<0.05).Lymph node metastasis rates at stations 1,2,3,and 7 were lower in type E than in Eg and Ge(P<0.05).Survival rates for type E(45.5%)were significantly lower than those for Eg(48.4%)and Ge(73.0%)(P=0.001).Type E tumors,vascular infiltration,T3-T4 invasion depth,and lymph node metastasis,were identified as independent prognostic factors(P<0.05).The gastric cancer staging system outperformed the esophageal adenocarcinoma system for type Ge tumors.CONCLUSION Clinicopathological characteristics and prognoses varied between the AEG groups,with type E demonstrating distinct features.The gastric cancer staging system more accurately predicted type Ge AEG prognosis,guiding clinical decision-making.
基金supported by the National Natural Science Foundation of China(Grant Nos.12474286,22173052,and 12204281).
文摘The forming processes of 4,40-dipyridyl-based single-molecule junctions and mechanically induced conductance switching as well as the side-group effects are systematically investigated by applying the ab initio-based adiabatic geometric optimization method and the one-dimensional transmission combined with three-dimensional correction approximation(OTCTCA)method.The numerical results show that for the 4,40-dipyridyl with a p-conjugated phenyl-phosphoryl or diphenylsilyl side group,the pyridyl vertically anchors on the second atomic layer of the pyramid-shaped Au tip electrode at small inter-electrode distances by laterally pushing the apical Au atom aside,which induces stronger pyridyl-electrode coupling and high-conductance state of the formed junctions.As the inter-electrode distance increases,the pyridyl shifts to the apical Au atom of the tip electrode.This apical Au atom introduces additional scatterings to the tunneling electrons and significantly decreases the conductance of the junctions.Furthermore,for the 4,40-dipyridyl with a phenyl-phosphoryl side group,the probability of manifesting the high-conductance state is decreased due to the oxygen atom reducing the probability of the pyridyl adsorbing on the second layer of Au tip electrode.In contrast,for the 4,40-dipyridyl with a nonconjugated cyclohexyl-phosphoryl side group,the steric hindrance from the bulky cyclohexyl group leads the molecule to preferentially form the O-Au contact,which prevents both the high conductance and mechanically induced conductance switching of the junction.Our results provide a theoretical understanding of the side-group effects on electronic transport properties of single-molecule junctions,offering an alternative explanation for the experimental observations.
文摘Aim:The aim of this study was to investigate the factors affecting treatment success in children that got either pyeloplasty or J stent placement in ureteropelvic junction obstruction(UPJO).Patients and Methods:The study comprised 126 patients who either J stent placement or pyeloplasty performed by the same physician for UPJO from 2012 to 2022.The criteria for surgical intervention adhered to the European Association of Urology(EAU)recommendations.Symptomatic patients with verified obstruction,with a split renal function(SRF)over 40%,low-grade hydronephrosis(Society of Fetal Urology grade 2),and an obstructive segment measuring less than 1 cm,had Double-J stent placement.Furthermore,in infants exhibiting poor health or development retardation,a J stent was inserted as a temporary measure to alleviate obstruction and maintain renal function,notwithstanding the recommendation for pyeloplasty.Results:The treatment success rate was 43.9%in the J stent group and 88.4%in the pyeloplasty group,with a statistically significant difference(p<0.001).The kind of procedure(pyeloplasty vs.stent)was the sole independent prognostic factor predicting treatment success(HR:4.77,p<0.001)in the multiple logistic regression analysis.No statistically significant change was observed in preoperative and postoperative SRF(48%vs.48.5%,p=0.923)among patients with stent failure,confirming a transient preservation of functional advantage.Conclusion:The placement of a stent may have restricted success rates in specific patients with UPJO.Preserving renal function may be advantageous until definitive surgery,particularly in cases where there are hazards associated with anesthesia and invasive procedures.
基金supported by the National Natural Science Foundation of China(Grant nos.12075145 and 12211540002)the Science and Technology Commission of Shanghai Municipal(Grant no.2019SHZDZX01-ZX04)。
文摘This article primarily establishes a two-soliton system and employs the Lewis-Riesenfeld invariant inverse control method to achieve shortcuts to adiabaticity(STA)technology.We study an atomic soliton Josephson junctions(SJJs)device and subsequently compare and analyze it with atomic bosonic Josephson junctions.Moreover,we use higher-order expressions of the auxiliary equations to optimize the results and weaken the detrimental effect of the sloshing amplitude.We find that in the adiabatic shortcut evolution of two systems with time-containing tunnelling rates,the SJJs system is more robust over a rather short time evolution.In comparison with linear ramping,the STA technique is easier to achieve with the precise modulation of the quantum state in the SJJs system.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1405100)the NSFC distinguished Young Scholar program(Grant No.12225409)+6 种基金the Basic Science Center Project of National Natural Science Foundation of China(NSFC)(Grant No.52388201)the NSFC general program(Grant Nos.52271181,51831005,and 12421004)the Innovation Program for Quantum Science and Technology(Grant No.2023ZD0300500)Beijing Natural Science Foundation(Grant No.Z240006)supported by the KAUST Office of Sponsored Research(OSR)under Award Nos.ORA-CRG102021-4665 and ORA-CRG11-2022-5031supported by the National Key Research and Development Program of China(No.2024YFA1408503)Sichuan Province Science and Technology Support Program(No.2025YFHZ0147)。
文摘Magnetic skyrmions are recognized as potential information carriers for building the next-generation spintronic memory and logic devices.Towards functional device applications,efficient electrical detection of skyrmions at room temperature is one of the most important prerequisites.