Using Fourier inversion transform, P.D.E. and Feynman-Kac formula, the closedform solution for price on European call option is given in a double exponential jump-diffusion model with two different market structure ri...Using Fourier inversion transform, P.D.E. and Feynman-Kac formula, the closedform solution for price on European call option is given in a double exponential jump-diffusion model with two different market structure risks that there exist CIR stochastic volatility of stock return and Vasicek or CIR stochastic interest rate in the market. In the end, the result of the model in the paper is compared with those in other models, including BS model with numerical experiment. These results show that the double exponential jump-diffusion model with CIR-market structure risks is suitable for modelling the real-market changes and very useful.展开更多
This paper studies the critical exercise price of American floating strike lookback options under the mixed jump-diffusion model. By using It formula and Wick-It-Skorohod integral, a new market pricing model estab...This paper studies the critical exercise price of American floating strike lookback options under the mixed jump-diffusion model. By using It formula and Wick-It-Skorohod integral, a new market pricing model established under the environment of mixed jumpdiffusion fractional Brownian motion. The fundamental solutions of stochastic parabolic partial differential equations are estimated under the condition of Merton assumptions. The explicit integral representation of early exercise premium and the critical exercise price are also given, then the American floating strike lookback options factorization formula is obtained, the results is generalized the classical Black-Scholes market pricing model.展开更多
In this paper, we consider a hyper-exponential jump-diffusion model with a constant dividend barrier. Explicit solutions for the Laplace transform of the ruin time, and the Gerber- Shiu function are obtained via marti...In this paper, we consider a hyper-exponential jump-diffusion model with a constant dividend barrier. Explicit solutions for the Laplace transform of the ruin time, and the Gerber- Shiu function are obtained via martingale stopping.展开更多
A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that gov...A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that governs the time evolution of the probability density function of this process. In the stochastic process and, correspondingly, in the FP model the control function enters as a time-dependent coefficient. The objectives of the control are to minimize a discrete-in-time, resp. continuous-in-time, tracking functionals and its L2- and L1-costs, where the latter is considered to promote control sparsity. An efficient proximal scheme for solving these optimal control problems is considered. Results of numerical experiments are presented to validate the theoretical results and the computational effectiveness of the proposed control framework.展开更多
Quasi-elastic neutron scattering(QENS) has many applications that are directly related to the development of highperformance functional materials and biological macromolecules, especially those containing some water. ...Quasi-elastic neutron scattering(QENS) has many applications that are directly related to the development of highperformance functional materials and biological macromolecules, especially those containing some water. The analysis method of QENS spectra data is important to obtain parameters that can explain the structure of materials and the dynamics of water. In this paper, we present a revised jump-diffusion and rotation-diffusion model(rJRM) used for QENS spectra data analysis. By the rJRM, the QENS spectra from a pure magnesium-silicate-hydrate(MSH) sample are fitted well for the Q range from 0.3 ^(-1) to 1.9 ^(-1) and temperatures from 210 K up to 280 K. The fitted parameters can be divided into two kinds. The first kind describes the structure of the MSH sample, including the ratio of immobile water(or bound water) C and the confining radius of mobile water a_0. The second kind describes the dynamics of confined water in pores contained in the MSH sample, including the translational diffusion coefficient Dt, the average translational residence timeτ0, the rotational diffusion coefficient D_r, and the mean squared displacement(MSD) u^2. The r JRM is a new practical method suitable to fit QENS spectra from porous materials, where hydrogen atoms appear in both solid and liquid phases.展开更多
In this article, the joint distributions of several actuarial diagnostics which are important to insurers' running for the jump-diffusion risk process are examined. They include the ruin time, the time of the surplus...In this article, the joint distributions of several actuarial diagnostics which are important to insurers' running for the jump-diffusion risk process are examined. They include the ruin time, the time of the surplus process leaving zero ultimately (simply, the ultimately leaving-time), the surplus immediately prior to ruin, the supreme profits before ruin, the supreme profits and deficit until it leaves zero ultimately and so on. The explicit expressions for their distributions are obtained mainly by the various properties of Levy process, such as the homogeneous strong Markov property and the spatial homogeneity property etc, moveover, the many properties for Brownian motion.展开更多
This work is concerned with coupling for a class of Markovian switching jump-diffusion processes.The processes under consideration can be regarded as a number of jump-diffusion processes modulated by a Markovian switc...This work is concerned with coupling for a class of Markovian switching jump-diffusion processes.The processes under consideration can be regarded as a number of jump-diffusion processes modulated by a Markovian switching device.For this class of processes,we construct a successful coupling and an order-preserving coupling.展开更多
This paper deals with the dividend optimization problem for an insurance company, whose surplus follows a jump-diffusion process. The objective of the company is to maximize the expected total discounted dividends pai...This paper deals with the dividend optimization problem for an insurance company, whose surplus follows a jump-diffusion process. The objective of the company is to maximize the expected total discounted dividends paid out until the time of ruin. Under concavity assumption on the optimal value function, the paper states some general properties and, in particular, smoothness results on the optimal value function, whose analysis mainly relies on viscosity solutions of the associated Hamilton-Jacobi-Bellman (HJB) equations. Based on these properties, the explicit expression of the optimal value function is obtained. And some numerical calculations are presented as the application of the results.展开更多
In this paper, under the assumption that the exchange rate follows the extended Vasicek model, the pricing of the reset option in FBM model is investigated. Some interesting themes such as closed-form formulas for the...In this paper, under the assumption that the exchange rate follows the extended Vasicek model, the pricing of the reset option in FBM model is investigated. Some interesting themes such as closed-form formulas for the reset option with a single reset date and the phenomena of delta of the reset jumps existing in the reset option during the reset date are discussed. The closed-form formulae of pricing for two kinds of power options are derived in the end.展开更多
In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion process perturbed by a standard Brownian motion and...In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion process perturbed by a standard Brownian motion and the reinsurance premium is calculated according to the variance principle, the implicit expression of the priority and corresponding value function when the utility function is exponential are obtained. At last, the value function is argued, the properties of the priority about parameters are discussed and numerical results of the priority for various claim-size distributions are shown.展开更多
The classical Poisson risk model in ruin theory assumed that the interarrival times between two successive claims are mutually independent, and the claim sizes and claim intervals are also mutually independent. In thi...The classical Poisson risk model in ruin theory assumed that the interarrival times between two successive claims are mutually independent, and the claim sizes and claim intervals are also mutually independent. In this paper, we modify the classical Poisson risk model to describe the surplus process of an insurance portfolio. We consider a jump-diffusion risk process compounded by a geometric Brownian motion, and assume that the claim sizes and claim intervals are dependent. Using the properties of conditional expectation, we establish integro-differential equations for the Gerber-Shiu function and the ultimate ruin probability.展开更多
In this paper,we study the asymptotic behaviors of implied volatility in an affine jump-diffusion model.By assuming that log stock prices under the risk-neutral measure follow an affine jump-diffusion model,we show th...In this paper,we study the asymptotic behaviors of implied volatility in an affine jump-diffusion model.By assuming that log stock prices under the risk-neutral measure follow an affine jump-diffusion model,we show that an explicit form of the moment-generating function for log stock price can be obtained by solving a set of ordinary differential equations.A large-time large deviation principle for log stock prices is derived by applying the Gartner-Ellis theorem.We characterize the asymptotic behaviors of implied volatility in the large-maturity and large-strike regimes using the rate function in the large deviation principle.The asymptotics of the implied volatility for fixed-maturity,large-strike and small-strike regimes are also studied.Numerical results are provided to validate thetheoretical work.展开更多
In this paper,we study the strong convergence of a jump-adapted implicit Milstein method for a class of jump-diffusion stochastic differential equations with non-globally Lipschitz drift coefficients.Compared with the...In this paper,we study the strong convergence of a jump-adapted implicit Milstein method for a class of jump-diffusion stochastic differential equations with non-globally Lipschitz drift coefficients.Compared with the regular methods,the jump-adapted methods can significantly reduce the complexity of higher order methods,which makes them easily implementable for scenario simulation.However,due to the fact that jump-adapted time discretization is path dependent and the stepsize is not uniform,this makes the numerical analysis of jump-adapted methods much more involved,especially in the non-globally Lipschitz setting.We provide a rigorous strong convergence analysis of the considered jump-adapted implicit Milstein method by developing some novel analysis techniques and optimal rate with order one is also successfully recovered.Numerical experiments are carried out to verify the theoretical findings.展开更多
This paper considers the problem of numerically evaluating discrete barrier option prices when the underlying asset follows the jump-diffusion model with stochas-tic volatility and stochastic intensity.We derive the t...This paper considers the problem of numerically evaluating discrete barrier option prices when the underlying asset follows the jump-diffusion model with stochas-tic volatility and stochastic intensity.We derive the three-dimensional characteristic function of the log-asset price,the volatility and the jump intensity.We also provide the approximate formula of the discrete barrier option prices by the three-dimensional Fourier cosine series expansion(3D-COS)method.Numerical results show that the 3D-COS method is rather correct,fast and competent for pricing the discrete barrier options.展开更多
This paper establishes a stochastic maximum principle for a stochastic control of mean-field model which is governed by a Lévy process involving continuous and impulse control.The authors also show the existence ...This paper establishes a stochastic maximum principle for a stochastic control of mean-field model which is governed by a Lévy process involving continuous and impulse control.The authors also show the existence and uniqueness of the solution to a jump-diffusion mean-field stochastic differential equation involving impulse control.As for its application,a mean-variance portfolio selection problem has been solved.展开更多
In this paper, we consider the finite time ruin probability for the jump-diffusion Poisson process. Under the assurnptions that the claimsizes are subexponentially distributed and that the interest force is constant, ...In this paper, we consider the finite time ruin probability for the jump-diffusion Poisson process. Under the assurnptions that the claimsizes are subexponentially distributed and that the interest force is constant, we obtain an asymptotic formula for the finite-time ruin probability. The results we obtain extends the corresponding results of Kliippelberg and Stadtmüller and Tang.展开更多
This work focuses on a class of jump-diffusions with state-dependent switching. First, compared with the existing results in the literature, in our model, the characteristic measure is allowed to be a-finite. The exis...This work focuses on a class of jump-diffusions with state-dependent switching. First, compared with the existing results in the literature, in our model, the characteristic measure is allowed to be a-finite. The existence and uniqueness of the underlying process are obtained by representing the switching component as a stochastic integral with respect to a Poisson random measure and by using a successive approximation method. Then, the Feller property is proved by means of introducing auxiliary processes and by making use of Radon-Nikodym derivatives. Furthermore, the irreducibility and all compact sets being petite are demonstrated. Based on these results, the uniform ergodicity is established under a general Lyapunov condition. Finally, easily verifiable conditions for uniform ergodicity are established when the jump-diffusions are linearizable with respect to the variable x (the state variable corresponding to the jump-diffusion component) in a neighborhood of the infinity, and some examples are presented to illustrate the results.展开更多
We use an actuarial approach to estimate the valuation of the reload option for a non-tradable risk asset under the jump-diffusion processes and Hull-White interest rate. We verify the validity of the actuarial approa...We use an actuarial approach to estimate the valuation of the reload option for a non-tradable risk asset under the jump-diffusion processes and Hull-White interest rate. We verify the validity of the actuarial approach to the European vanilla option for non-tradable assets. The formulas of the actuarial approach to the reload option are derived from the fair premium principle and the obtained results are arbitrage. Numerical experiments are conducted to analyze the effects of different parameters on the results of valuation as well as their differences from those obtained by the no-arbitrage approach. Finally, we give the valuations of the reload options under different parameters.展开更多
In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and ...In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and asymptotic normality for the estimate of the second infinitesimal moment of continuous time models using the reweighted Nadaraya-Watson estimator to the true function.展开更多
In this paper, we consider an improved model of pricing vulnerable options with credit risk. We assume that the vulnerable European options not only face default risk, but also face the rare shocks of the underlying a...In this paper, we consider an improved model of pricing vulnerable options with credit risk. We assume that the vulnerable European options not only face default risk, but also face the rare shocks of the underlying assets and the counterparty assets. The dynamics of two correlated assets are modeled as a class of jump diffusion processes. Furthermore, we assume that the dynamic of the corporate liability is a geometric Brownian motion that is related to the underlying asset and the counterparty asset. Under this new framework,we give an explicit pricing formula of the vulnerable European options.展开更多
基金Supported by the NNSF of China(40675023)the PHD Foundation of Guangxi Normal University.
文摘Using Fourier inversion transform, P.D.E. and Feynman-Kac formula, the closedform solution for price on European call option is given in a double exponential jump-diffusion model with two different market structure risks that there exist CIR stochastic volatility of stock return and Vasicek or CIR stochastic interest rate in the market. In the end, the result of the model in the paper is compared with those in other models, including BS model with numerical experiment. These results show that the double exponential jump-diffusion model with CIR-market structure risks is suitable for modelling the real-market changes and very useful.
基金Supported by the Fundamental Research Funds of Lanzhou University of Finance and Economics(Lzufe2017C-09)
文摘This paper studies the critical exercise price of American floating strike lookback options under the mixed jump-diffusion model. By using It formula and Wick-It-Skorohod integral, a new market pricing model established under the environment of mixed jumpdiffusion fractional Brownian motion. The fundamental solutions of stochastic parabolic partial differential equations are estimated under the condition of Merton assumptions. The explicit integral representation of early exercise premium and the critical exercise price are also given, then the American floating strike lookback options factorization formula is obtained, the results is generalized the classical Black-Scholes market pricing model.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK20130260)the National Natural Science Foundation of China(11301369)the Postdoctoral Science Foundation of China(2013M540371)
文摘In this paper, we consider a hyper-exponential jump-diffusion model with a constant dividend barrier. Explicit solutions for the Laplace transform of the ruin time, and the Gerber- Shiu function are obtained via martingale stopping.
文摘A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that governs the time evolution of the probability density function of this process. In the stochastic process and, correspondingly, in the FP model the control function enters as a time-dependent coefficient. The objectives of the control are to minimize a discrete-in-time, resp. continuous-in-time, tracking functionals and its L2- and L1-costs, where the latter is considered to promote control sparsity. An efficient proximal scheme for solving these optimal control problems is considered. Results of numerical experiments are presented to validate the theoretical results and the computational effectiveness of the proposed control framework.
文摘Quasi-elastic neutron scattering(QENS) has many applications that are directly related to the development of highperformance functional materials and biological macromolecules, especially those containing some water. The analysis method of QENS spectra data is important to obtain parameters that can explain the structure of materials and the dynamics of water. In this paper, we present a revised jump-diffusion and rotation-diffusion model(rJRM) used for QENS spectra data analysis. By the rJRM, the QENS spectra from a pure magnesium-silicate-hydrate(MSH) sample are fitted well for the Q range from 0.3 ^(-1) to 1.9 ^(-1) and temperatures from 210 K up to 280 K. The fitted parameters can be divided into two kinds. The first kind describes the structure of the MSH sample, including the ratio of immobile water(or bound water) C and the confining radius of mobile water a_0. The second kind describes the dynamics of confined water in pores contained in the MSH sample, including the translational diffusion coefficient Dt, the average translational residence timeτ0, the rotational diffusion coefficient D_r, and the mean squared displacement(MSD) u^2. The r JRM is a new practical method suitable to fit QENS spectra from porous materials, where hydrogen atoms appear in both solid and liquid phases.
基金Supported by the National Natural Sci-ence Foundations of China (10271062 and 10471119)the Natural Science Foundation of Shandong Province(Y2004A06, Y2008A12, and ZR2009AL015)+1 种基金the Science Foundations of Shandong Provincial Education Department (J07yh05)the Science Foundations of Qufu Normal University (XJ0713, Bsqd200517)
文摘In this article, the joint distributions of several actuarial diagnostics which are important to insurers' running for the jump-diffusion risk process are examined. They include the ruin time, the time of the surplus process leaving zero ultimately (simply, the ultimately leaving-time), the surplus immediately prior to ruin, the supreme profits before ruin, the supreme profits and deficit until it leaves zero ultimately and so on. The explicit expressions for their distributions are obtained mainly by the various properties of Levy process, such as the homogeneous strong Markov property and the spatial homogeneity property etc, moveover, the many properties for Brownian motion.
基金Supported by the National Natural Science Foundation of China (11171024)
文摘This work is concerned with coupling for a class of Markovian switching jump-diffusion processes.The processes under consideration can be regarded as a number of jump-diffusion processes modulated by a Markovian switching device.For this class of processes,we construct a successful coupling and an order-preserving coupling.
文摘This paper deals with the dividend optimization problem for an insurance company, whose surplus follows a jump-diffusion process. The objective of the company is to maximize the expected total discounted dividends paid out until the time of ruin. Under concavity assumption on the optimal value function, the paper states some general properties and, in particular, smoothness results on the optimal value function, whose analysis mainly relies on viscosity solutions of the associated Hamilton-Jacobi-Bellman (HJB) equations. Based on these properties, the explicit expression of the optimal value function is obtained. And some numerical calculations are presented as the application of the results.
文摘In this paper, under the assumption that the exchange rate follows the extended Vasicek model, the pricing of the reset option in FBM model is investigated. Some interesting themes such as closed-form formulas for the reset option with a single reset date and the phenomena of delta of the reset jumps existing in the reset option during the reset date are discussed. The closed-form formulae of pricing for two kinds of power options are derived in the end.
基金Supported by the Humanity and Social Science Foundation of Ministry of Education of China(10YJC790296)Supported by the National Natural Science Foundation of China(71073020)
文摘In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion process perturbed by a standard Brownian motion and the reinsurance premium is calculated according to the variance principle, the implicit expression of the priority and corresponding value function when the utility function is exponential are obtained. At last, the value function is argued, the properties of the priority about parameters are discussed and numerical results of the priority for various claim-size distributions are shown.
文摘The classical Poisson risk model in ruin theory assumed that the interarrival times between two successive claims are mutually independent, and the claim sizes and claim intervals are also mutually independent. In this paper, we modify the classical Poisson risk model to describe the surplus process of an insurance portfolio. We consider a jump-diffusion risk process compounded by a geometric Brownian motion, and assume that the claim sizes and claim intervals are dependent. Using the properties of conditional expectation, we establish integro-differential equations for the Gerber-Shiu function and the ultimate ruin probability.
基金supported in part by the Natural Science Foundation of China(Grant No.12071361)the Natural Science Foundation of Guangdong Province(Grant No.2020A1515010822)Shenzhen Natural Science Fund(the Stable Support Plan Program 20220810152104001).
文摘In this paper,we study the asymptotic behaviors of implied volatility in an affine jump-diffusion model.By assuming that log stock prices under the risk-neutral measure follow an affine jump-diffusion model,we show that an explicit form of the moment-generating function for log stock price can be obtained by solving a set of ordinary differential equations.A large-time large deviation principle for log stock prices is derived by applying the Gartner-Ellis theorem.We characterize the asymptotic behaviors of implied volatility in the large-maturity and large-strike regimes using the rate function in the large deviation principle.The asymptotics of the implied volatility for fixed-maturity,large-strike and small-strike regimes are also studied.Numerical results are provided to validate thetheoretical work.
基金supported by the National Natural Science Foundation of China(Grant Nos.11901565,12071261,11831010,11871068)by the Science Challenge Project(No.TZ2018001)by National Key R&D Plan of China(Grant No.2018YFA0703900).
文摘In this paper,we study the strong convergence of a jump-adapted implicit Milstein method for a class of jump-diffusion stochastic differential equations with non-globally Lipschitz drift coefficients.Compared with the regular methods,the jump-adapted methods can significantly reduce the complexity of higher order methods,which makes them easily implementable for scenario simulation.However,due to the fact that jump-adapted time discretization is path dependent and the stepsize is not uniform,this makes the numerical analysis of jump-adapted methods much more involved,especially in the non-globally Lipschitz setting.We provide a rigorous strong convergence analysis of the considered jump-adapted implicit Milstein method by developing some novel analysis techniques and optimal rate with order one is also successfully recovered.Numerical experiments are carried out to verify the theoretical findings.
文摘This paper considers the problem of numerically evaluating discrete barrier option prices when the underlying asset follows the jump-diffusion model with stochas-tic volatility and stochastic intensity.We derive the three-dimensional characteristic function of the log-asset price,the volatility and the jump intensity.We also provide the approximate formula of the discrete barrier option prices by the three-dimensional Fourier cosine series expansion(3D-COS)method.Numerical results show that the 3D-COS method is rather correct,fast and competent for pricing the discrete barrier options.
基金supported by the National Science Foundation of China under Grant No.11671404the Fundamental Research Funds for the Central Universities of Central South University under Grant No.10553320171635.
文摘This paper establishes a stochastic maximum principle for a stochastic control of mean-field model which is governed by a Lévy process involving continuous and impulse control.The authors also show the existence and uniqueness of the solution to a jump-diffusion mean-field stochastic differential equation involving impulse control.As for its application,a mean-variance portfolio selection problem has been solved.
基金Supported by the National Natural Science Foundation of China(No.70471071)Philosophy and Social Science Foundation of the Education Anthority of Jiangsu Province(No.04SJB630005)
文摘In this paper, we consider the finite time ruin probability for the jump-diffusion Poisson process. Under the assurnptions that the claimsizes are subexponentially distributed and that the interest force is constant, we obtain an asymptotic formula for the finite-time ruin probability. The results we obtain extends the corresponding results of Kliippelberg and Stadtmüller and Tang.
基金supported in part by National Natural Science Foundation of China(Grant No. 11171024)supported in part by National Natural Science Foundation of China (Grant No.70871055)supported in part by National Science Foundationof US (Grant No. DMS-0907753)
文摘This work focuses on a class of jump-diffusions with state-dependent switching. First, compared with the existing results in the literature, in our model, the characteristic measure is allowed to be a-finite. The existence and uniqueness of the underlying process are obtained by representing the switching component as a stochastic integral with respect to a Poisson random measure and by using a successive approximation method. Then, the Feller property is proved by means of introducing auxiliary processes and by making use of Radon-Nikodym derivatives. Furthermore, the irreducibility and all compact sets being petite are demonstrated. Based on these results, the uniform ergodicity is established under a general Lyapunov condition. Finally, easily verifiable conditions for uniform ergodicity are established when the jump-diffusions are linearizable with respect to the variable x (the state variable corresponding to the jump-diffusion component) in a neighborhood of the infinity, and some examples are presented to illustrate the results.
基金Supported by the National Natural Science Foundation of China(No.11571365,11171349)
文摘We use an actuarial approach to estimate the valuation of the reload option for a non-tradable risk asset under the jump-diffusion processes and Hull-White interest rate. We verify the validity of the actuarial approach to the European vanilla option for non-tradable assets. The formulas of the actuarial approach to the reload option are derived from the fair premium principle and the obtained results are arbitrage. Numerical experiments are conducted to analyze the effects of different parameters on the results of valuation as well as their differences from those obtained by the no-arbitrage approach. Finally, we give the valuations of the reload options under different parameters.
基金supported by National Natural Science Foundation of China (Grant Nos.10871177,11071213)Research Fund for the Doctor Program of Higher Education of China (Grant No.20090101110020)
文摘In this paper,we study the nonparametric estimation of the second infinitesimal moment by using the reweighted Nadaraya-Watson (RNW) approach of the underlying jump diffusion model.We establish strong consistency and asymptotic normality for the estimate of the second infinitesimal moment of continuous time models using the reweighted Nadaraya-Watson estimator to the true function.
基金supported by the National Natural Science Foundation of China(No.11471051 and No.11871010)supported by the National Social Science Foundation of China(No.16ZDA033)
文摘In this paper, we consider an improved model of pricing vulnerable options with credit risk. We assume that the vulnerable European options not only face default risk, but also face the rare shocks of the underlying assets and the counterparty assets. The dynamics of two correlated assets are modeled as a class of jump diffusion processes. Furthermore, we assume that the dynamic of the corporate liability is a geometric Brownian motion that is related to the underlying asset and the counterparty asset. Under this new framework,we give an explicit pricing formula of the vulnerable European options.