期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Development and Experimental Evaluation of Human⁃Robot Safety of a Series Elastic Joint for Supernumerary Robotic Limbs
1
作者 XIAO Yao LIAO Ziyu +3 位作者 QU Wenjie CHANG Tianzuo LIU Keming CHEN Bai 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第4期464-476,共13页
Human-robot safety is an important topic in wearable robotics,especially in supernumerary robotic limbs(SRLs).The proposal of flexible joint improves human-robot safety strategy,which allows physical contact between h... Human-robot safety is an important topic in wearable robotics,especially in supernumerary robotic limbs(SRLs).The proposal of flexible joint improves human-robot safety strategy,which allows physical contact between human and robots,rather than strictly limiting the human-robot motion.However,most researchers focus on the variable stiffness features of flexible joints,but few evaluate the performance of the flexible joint in the human-robot collision.Therefore,the performance of two typical flexible joints,including the series elastic joint(SEJ)and the passive variable stiffness joint(PVSJ),are compared through dynamic collision experiments.The results demonstrate that the SEJ absorbs 40.7%-58.7%of the collision force and 34.2%-45.2%of the collision torque in the driven-torque below 4 N·m and driven-speed of 3-7(°)/s,which is more stable than PVSJ.In addition,the stiffness error of SEJ is measured at 5.1%,significantly lower than the 23.04%measured in the PVSJ.The huge stiffness error of PVSJ leads to its unreliability in buffering collision.Furthermore,we analyze results and confirm that SEJ has a more stable human-robot safety performance in buffering dynamic collision.Consequently,the SEJ is suitable in SRLs for human-robot safety in our scenario. 展开更多
关键词 supernumerary robotic limbs(SRLs) variable stiffness joint(SEJ) series elastic joint human-robot safety wearable robot
在线阅读 下载PDF
Seismic response analysis of buried pipelines with varying stiffness by shaking table tests
2
作者 Chen Hongyu Cui Jie +3 位作者 Li Yadong Ouyang Zhiyong Huang Xiangyun Shan Yi 《Earthquake Engineering and Engineering Vibration》 2025年第2期583-594,共12页
The relative stiffness between underground structures and surrounding soil may significantly influence the dynamic response of such structures.In this study,two underground pipelines were fabricated using rubber joint... The relative stiffness between underground structures and surrounding soil may significantly influence the dynamic response of such structures.In this study,two underground pipelines were fabricated using rubber joints with varying stiffness,and the corresponding dynamic response was evaluated.Model soils were prepared based on similarity ratios.Next,reduced-scale shaking table tests were conducted to investigate the impact of circular underground structures with varying stiffness joints on the amplification of ground acceleration,dynamic response,and deformation patterns of the underground pipelines.The comparative analysis showed that structures with lower stiffness exert less constraint on the surrounding soil,resulting in a higher amplification factor of ground acceleration.The seismic response of less stiff structures is generally 1.1 to 1.3 times the response of the stiffer structures.Therefore,the seismic response of the variable stiffness pipeline exhibits pronounced characteristics.Rubber joints effectively reduce the seismic response of underground structures,demonstrating favorable isolation effects.Consequently,relative stiffness plays a crucial role in the seismic design of underground structures,and the use of rubber materials in underground structures is advantageous. 展开更多
关键词 shaking table test underground pipeline variable stiffness joint pipeline seismic response
在线阅读 下载PDF
Inverse Kinematics Analysis of a Five Jointed Revolute Arm Mechanism
3
作者 Vincent Olunloy Oyewusi Ibidapo-Obe +1 位作者 David Olowookere Michael Ayomoh 《Journal of Control Science and Engineering》 2014年第1期7-15,共9页
This paper presents some initial solutions to the problem of accuracy and repeatability of the arm position placement in applied kinematics by solving the inverse kinematics problem of a serial jointed manipulator who... This paper presents some initial solutions to the problem of accuracy and repeatability of the arm position placement in applied kinematics by solving the inverse kinematics problem of a serial jointed manipulator whose forward kinematics solution was earlier presented to solve the position placement problem of a mobile manipulator for Lunar Oxygen production. The problem herein is that of identifying a combination of joint angles to effectively position the end-effecter at a specified location in space. The reverse solution as presented in this paper is predicated on DH's (Denavit-Hartenberg's) technique for robot arm position analysis. The generalized solution for the 5-degrees of freedom DOF (degree of freedom) revolute joint variables which comprises 2-1inks and a spade-like 3-DOF end-effecter was obtained by solving a set of algebraic equations emerging from series of transformation matrices. The proposed solution herein has a high degree of accuracy and repeatability for workspace reachable domains where joint combination is analytic. 展开更多
关键词 Inverse kinematics joint variables DH's mobile manipulator end-effecter.
在线阅读 下载PDF
Structural design and stiffness matching control of bionic variable stiffness joint for human–robot collaboration 被引量:1
4
作者 Xiuli Zhang Liqun Huang Hao Niu 《Biomimetic Intelligence & Robotics》 2023年第1期46-56,共11页
The physical compliance of interaction is an important requirement for safe and efficient collaboration between robots and humans,and the realization of human–robot compliance requires robot joints with variable stif... The physical compliance of interaction is an important requirement for safe and efficient collaboration between robots and humans,and the realization of human–robot compliance requires robot joints with variable stiffness similar to those of human joints.In this study,based on the tissue structure and driving principle of the human arm muscle ligament,a robot joint with variable stiffness is designed,consisting of an elastic belt and serial elastic actuator in parallel.The variable stiffness of the joint is realized by adjusting the tension length of the elastic belt.Surface electromyography(sEMG)signals of the human arm are used as the characterization quantity of joint stiffness to establish the pseudostiffness model of the elbow joint.The stiffness of the robot joints is adjusted in real-time to match the human arm stiffness based on the changes in sEMG signals of the human arm during operation.Real-time compliant interaction of human–robot collaboration is realized based on an end stiffness matching strategy.Additionally,to verify the effectiveness of the human joint stiffness matching-based compliance control strategy,a human–robot cooperative lifting experiment was designed.The bionic variable stiffness joint shows good stiffness adjustment,and the human–robot joint stiffness matching strategy based on human sEMG signals can improve the effectiveness and comfort of human–robot collaboration. 展开更多
关键词 variable stiffness joint Bionic design Human-robot collaboration Stiffness matching SEMG
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部