This paper based on the essay [1], studies in case that replicated observations are available in some experimental points., the parameters estimation of one dimensional linear errors-in-variables (EV) models. Asymptot...This paper based on the essay [1], studies in case that replicated observations are available in some experimental points., the parameters estimation of one dimensional linear errors-in-variables (EV) models. Asymptotic normality is established.展开更多
This paper proposes a new primary lazy update protocol, PTCS (Primary Transaction Commit Schedule). In the PTCS protocol, a serializable primary transaction schedule is generated firstly and then the secondary trans...This paper proposes a new primary lazy update protocol, PTCS (Primary Transaction Commit Schedule). In the PTCS protocol, a serializable primary transaction schedule is generated firstly and then the secondary transactions are committed according to the serializable primary transaction schedule. PTCS protocol can guarantee serializability if the data copy graph contains no directed circles. It can also be ex tended to eliminate all requirements on the data copy graph. Compared to earlier works, PTCS protocol not only imposes a much weaker requirement on the data placement, but also avoids the deadlock caused by transaction waits and extra message overhead. The performance experiments show that the degradation of the performance caused by the replica man- agement of the PTCS protocol is tolerable.展开更多
In this paper, empirical Bayes test for a parameter θ of two-parameter exponential distribution is investigated with replicated past data. Under some conditions, the asymptotically optimal property is obtained. It is...In this paper, empirical Bayes test for a parameter θ of two-parameter exponential distribution is investigated with replicated past data. Under some conditions, the asymptotically optimal property is obtained. It is indicated that the rate of convergence can be very close to O(N-2^-1) in this case that a parameter μ is known.展开更多
Marbling, defined by the amount and the distribution of intramuscular fat and measured as beef marbling score (BMS), is an economically important trait of beef cattle in Japan. We recently reported that a single nucle...Marbling, defined by the amount and the distribution of intramuscular fat and measured as beef marbling score (BMS), is an economically important trait of beef cattle in Japan. We recently reported that a single nucleotide polymorphism (SNP), namely, c.-312A > G, in the endothelial differentiation sphingolipid G-proteincoupled receptor, 1 (EDG1) gene was associated with the BMS level in the Japanese Black beef cattle population of Oita prefecture, with the G allele being associated with a high level of the BMS. Thus, the c.-312A > G SNP seems to be a candidate marker for marker-assisted selection. In this study, we investigated whether this association could be replicated in the Japanese Black beef cattle population of Niigata prefecture and analyzed the effect of the SNP genotypes on the carcass traits other than the BMS. No significant differences in the BMS level were detected among the genotypes of the c.-312A > G SNP in the Niigata Japanese Black beef cattle population. The SNP genotype had no significant effects on the carcass weight, rib eye area and rib thickness of the cattle population. These findings suggested that the association of the c.-312A > G SNP with the BMS level in the Japanese Black beef cattle population was not replicated in the Niigata population, and revealed no effects of the SNP genotype on the beef productivity in the Niigata population. Thus, we concluded that the c.-312A > G SNP is not useful for effective marker-assisted selection to increase meat quality and, additionally, meat productivity in Japanese Black beef cattle of Niigata prefecture.展开更多
Marbling is regarded as an economically important trait of beef cattle inJapan, and measured as a beef marbling score (BMS). Our previous study reported an association between a single nucleotide polymorphism (SNP), r...Marbling is regarded as an economically important trait of beef cattle inJapan, and measured as a beef marbling score (BMS). Our previous study reported an association between a single nucleotide polymorphism (SNP), rs4164 8172, in the pancreatic lipase (PNLIP) gene and the BMS level, using the Japanese Black beef cattle population of Oita prefecture. Further, we showed that the T allele at the rs41648172 SNP is associated with a high level of the BMS. Thus, we suggested that the rs41648172 SNP seems to be a candidate marker for marker-assisted selection. Our present study was designed to investigate whether this association could be replicated in other independent Japanese Black cattle population and analyze the effect of the SNP genotypes on the carcass traits other than the BMS. We detected the marginally significant effect of the genotypes of the rs41648172 SNP on the BMS level by using the Japanese Black beef cattle population of Niigata prefecture (P = 0.0919), and obtained the result of the T allele associated with an increase in the BMS level, consistent with our previous data. In addition, we showed no significant association of the SNP with the subcutaneous fat thickness, carcass weight, rib eye area, rib thickness and yield estimate in the Japanese Black beef cattle population ofNiigataprefecture. Thus, we concluded that the rs41648172 SNP was useful for effective marker-assisted selection to increase the BMS level in Japanese Black beef cattle, based on the replicated association of the rs41648172 SNP with the BMS level in the other independent Japanese Black beef cattle population and no effect of the SNP genotypes on the carcass traits other than BMS.展开更多
Each rock joint is unique by nature which means that utilization of replicas in direct shear tests is required in experimental parameter studies.However,a method to acquire knowledge about the ability of the replicas ...Each rock joint is unique by nature which means that utilization of replicas in direct shear tests is required in experimental parameter studies.However,a method to acquire knowledge about the ability of the replicas to imitate the shear mechanical behavior of the rock joint and their dispersion in direct shear testing is lacking.In this study,a novel method is presented for geometric quality assurance of replicas.The aim is to facilitate generation of high-quality direct shear testing data as a prerequisite for reliable subsequent analyses of the results.In Part 1 of this study,two quality assurance parameters,smf and V_(Hp100),are derived and their usefulness for evaluation of geometric deviations,i.e.geometric reproducibility,is shown.In Part 2,the parameters are validated by showing a correlation between the parameters and the shear mechanical behavior,which qualifies the parameters for usage in the quality assurance method.Unique results from direct shear tests presenting comparisons between replicas and the rock joint show that replicas fulfilling proposed threshold values of σ_(mf)<0.06 mm and|V_(Hp100)|<0.2 mm have a narrow dispersion and imitate the shear mechanical behavior of the rock joint in all aspects apart from having a slightly lower peak shear strength.The wear in these replicas,which have similar morphology as the rock joint,is in the same areas as in the rock joint.The wear is slightly larger in the rock joint and therefore the discrepancy in peak shear strength derives from differences in material properties,possibly from differences in toughness.It is shown by application of the suggested method that the quality assured replicas manufactured following the process employed in this study phenomenologically capture the shear strength characteristics,which makes them useful in parameter studies.展开更多
There is considerable interest in quantitatively measuring nucleic acids from single cells to small populations. The most commonly employed laboratory method is the real-time polymerase chain reaction (PCR) analyzed w...There is considerable interest in quantitatively measuring nucleic acids from single cells to small populations. The most commonly employed laboratory method is the real-time polymerase chain reaction (PCR) analyzed with the crossing point or crossing threshold (Ct) method. Utilizing a multiwell plate reader we have performed hundreds of replicate reactions each at a set of initial conditions whose initial number of copies span a concentration range of ten orders of magnitude. The resultant Ct value distributions are analyzed with standard and novel statistical techniques to assess the variability/reliability of the PCR process. Our analysis supports the following conclusions. Given sufficient replicates, the mean and/or median Ct values are statistically distinguishable and can be rank ordered across ten orders of magnitude in initial template concentration. As expected, the variances in the Ct distributions grow as the number of initial copies declines to 1. We demonstrate that these variances are large enough to confound quantitative classi?cation of the initial condition at low template concentrations. The data indicate that a misclassi?cation transition is centered around 3000 initial copies of template DNA and that the transition region correlates with independent data on the thermal wear of the TAQ polymerase enzyme. We provide data that indicate that an alternative endpoint detection strategy based on the theory of well mixing and plate ?lling statistics is accurate below the mis- classi?cation transition where the real time method becomes unreliable.展开更多
Determining the crossing number of a given graph is NP-complete. The cycle of length m is denoted by Cm = v1v2…vmv1. G^((1))_(m) (m ≥ 5) is the graph obtained from Cm by adding two edges v1v3 and vlvl+2 (3 ≤ l ≤ m...Determining the crossing number of a given graph is NP-complete. The cycle of length m is denoted by Cm = v1v2…vmv1. G^((1))_(m) (m ≥ 5) is the graph obtained from Cm by adding two edges v1v3 and vlvl+2 (3 ≤ l ≤ m−2), G^((2))m (m ≥ 4) is the graph obtained from Cm by adding two edges v1v3 and v2v4. The famous Zarankiewicz’s conjecture on the crossing number of the complete bipartite graph Km,n states that cr(Km,n)=Z(m,n)=[m/2][m-1/2][n/2[n-1/2].Based on Zarankiewicz’s conjecture, a natural problem is to study the change in the crossingnumber of the graphs obtained from the complete bipartite graph by adding certain edge sets.If Zarankiewicz’s conjecture is true, this paper proves that cr(G^((1))_(m)+Kn)=Z(m,n)+2[n/2] and cr(G^((2))_(m)+Kn)=Z(m,n)+n.展开更多
The effect of current density on electrically assisted solid-state bulk joining,so-called electrically assisted pressure joining(EAPJ),of copper(Cu)C11000 and aluminum(Al)6061-T6 alloys is investigated.During EAPJ,var...The effect of current density on electrically assisted solid-state bulk joining,so-called electrically assisted pressure joining(EAPJ),of copper(Cu)C11000 and aluminum(Al)6061-T6 alloys is investigated.During EAPJ,various combinations of electric current density and duration are applied to the cylindrical specimen assembly to reach a fixed peak temperature during continuous axial compressive plastic deformation.Then,an additional electric current is periodically applied to the specimen assembly without plastic deformation to keep the temperature elevated.Microstructural observation confirms that the defect-free joint of the selected material combination is fabricated without melting and solidification.The athermal effect of electric current on the diffusion enhancement can be accommodated by introducing the effective activation energy or the effective temperature.The microstructural analysis also demonstrates that the current density both increases the thickness of the intermetallic compound(IMC)layer at the joint interface and affects the microstructural evolution of joining materials.Finally,the mechanical properties of the joint are strongly affected by the electric current density.The present study provides insight into the effect of electric current density on the solid-state joining mechanism of EAPJ of dissimilar material combinations.展开更多
Single-stranded DNA-binding proteins(SSBs)play essential roles in the replication,recombination and repair processes of organellar DNA molecules.In Arabidopsis thaliana,SSBs are encoded by a small family of two genes(...Single-stranded DNA-binding proteins(SSBs)play essential roles in the replication,recombination and repair processes of organellar DNA molecules.In Arabidopsis thaliana,SSBs are encoded by a small family of two genes(SSB1 and SSB2).However,the functional divergence of these two SSB copies in plants remains largely unknown,and detailed studies regarding their roles in the replication and recombination of organellar genomes are still incomplete.In this study,phylogenetic,gene structure and protein motif analyses all suggested that SSB1 and SSB2 probably diverged during the early evolution of seed plants.Based on accurate long-read sequencing results,ssb1 and ssb2 mutants had decreased copy numbers for both mitochondrial DNA(mtDNA)and plastid DNA(ptDNA),accompanied by a slight increase in structural rearrangements mediated by intermediate-sized repeats in mt genome and small-scale variants in both genomes.Our findings provide an important foundation for further investigating the effects of DNA dosage in the regulation of mutation frequencies in plant organellar genomes.展开更多
Chromosomal DNA double-strand breaks(DSBs)are often generated in the genome of all living organisms.To combat DNA damage,organisms have evolved several DSB repair mechanisms,with nonhomologous end-joining(NHEJ)and hom...Chromosomal DNA double-strand breaks(DSBs)are often generated in the genome of all living organisms.To combat DNA damage,organisms have evolved several DSB repair mechanisms,with nonhomologous end-joining(NHEJ)and homologous recombination(HR)being the two most prominent.Although two major pathways have been extensively studied in Arabidopsis,rice and other mammals,the exact functions and differences between the two DSB repair pathways in maize still remain less well understood.Here,we characterized mre11a and rad50,mutants of HR pathway patterns,which showed drastic degradation of the typically persistent embryo and endosperm during kernel development.Loss of MRE11 or RAD50 function led to chromosomal fragments and chromosomal bridges in anaphase.While we also reported that the NHEJ pathway patterns,KU70 and KU80 are associated with developmental growth and genome stability.ku70 and ku80 both displayed an obvious dwarf phenotype.Cytological analysis of the mutants revealed extensive chromosome fragmentation in metaphase and subsequent stages.Loss of KU70/80 function upregulated the expression of genes involved in cell cycle progression and nuclear division.These results provide insights into how NHEJ and HR are mechanistically executed during different plant developmental periods and highlight a competitive and complementary relationship between the NHEJ and HR pathways for DNA double-strand break repair in maize.展开更多
The DNA replication stress(RS)response is crucial for maintaining cellular homeostasis and promoting physiological longevity.However,the mechanisms by which long-lived species,such as bats,regulate RS to maintain geno...The DNA replication stress(RS)response is crucial for maintaining cellular homeostasis and promoting physiological longevity.However,the mechanisms by which long-lived species,such as bats,regulate RS to maintain genomic stability remain unclear.Also,recent studies have uncovered noncanonical roles of ribosome-associated factors in maintaining genomic stability.In this study,somatic skin fibroblasts from the long-lived big-footed bat(Myotis pilosus)were examined,with results showing that bat cells exhibited enhanced RS tolerance compared to mouse cells.Comparative transcriptome analysis under RS conditions revealed pronounced species-specific transcriptional differences,including robust up-regulation of ribosome biogenesis genes in bat cells and a markedly reduced activation of the P53 signaling pathway.These features emphasize a distinct homeostatic strategy in bat cells.Nuclear fragile X mental retardation-interacting protein 1(Nufip1),a ribosome-associated factor highly expressed in bat fibroblasts,was identified as a potential integrator of ribosomal and P53 signaling via its association with ribosomal protein S27-like(Rps27l).These findings provide direct cellular and molecular evidence for a noncanonical RS response in bats,highlighting a deeper understanding of the biological characteristics and genomic maintenance mechanisms of long-lived species.展开更多
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat...Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.展开更多
Virus-encoding RNA-dependent RNA polymerase(RdRp)is essential for genome replication and gene transcription of human coronaviruses(HCoVs),including severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).We previo...Virus-encoding RNA-dependent RNA polymerase(RdRp)is essential for genome replication and gene transcription of human coronaviruses(HCoVs),including severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).We previously identified the interaction between the catalytic subunit NSP12 of SARS-CoV-2 RdRp and the host protein CREB-regulated transcription coactivator 3(CRTC3),a member of the CRTC family that regulates cyclic AMP response element-binding protein(CREB)-mediated transcriptional activation.Currently,the implication of CRTC3 in the pathogenesis of HCoVs is poorly understood.Herein,we demonstrated that CRTC3 attenuates RdRp activity and SARS-CoV-2 genome replication,therefore reducing the production of progeny viruses.The interaction of CRTC3 with NSP12 contributes to its inhibitory effect on RdRp activity.Furthermore,we expanded the suppressive effects of two other CRTC family members(CRTC1 and CRTC2)on the RdRp activities of lethal HCoVs,including SARS-CoV-2 and Middle East respiratory syndrome coronavirus(MERS-CoV),along with the CREB antagonization.Overall,our research suggests that CRTCs restrict the replication of HCoVs and are antagonized by CREB,which not only provides new insights into the replication regulation of HCoVs,but also offers important information for the development of anti-HCoV interventions.展开更多
The development and application of large Die⁃Casting Al Alloy(DCAA)parts and Thermo⁃Formed Steel Sheets(TFSS)in Body⁃in⁃White(BIW)have created higher demands for the joining technology of high⁃strength steel/Al dissim...The development and application of large Die⁃Casting Al Alloy(DCAA)parts and Thermo⁃Formed Steel Sheets(TFSS)in Body⁃in⁃White(BIW)have created higher demands for the joining technology of high⁃strength steel/Al dissimilar materials.As an emerging technology,Flush Self⁃Piercing Riveting(FSPR)is still in the experimental phase and undergoing small batch equipment verification.This paper focuses on the joining methods for DCAA and TFSS in BIW,investigating the joining mechanisms,technical features,and forming principles of FSPR for steel/Al dissimilar materials with two⁃layer or three⁃layer plate combinations.Considering the TL4225/C611/CR5 sheet combination as a subject,the forming mechanism of high⁃quality joints was studied,and a physical and mathematical model was established to depict the relationship between the filling amount of the arc⁃gap and die dimensions,as well as the extrusion amount.This model effectively illustrates the relationship between the filling amount of the flowing metal in the arc⁃gap and critical parameters,such as die dimensions and feeding amounts.By simplifying the process of selecting joining parameters,it significantly reduces both the time and experimental workload associated with parameter selection.This provides a technical foundation for the application of DAAA and TFSS parts in BIW,enabling the rapid choice of appropriate joining parameters to meet the requirements for obtaining high⁃quality joints.The model can be effectively utilized to investigate the relationships between key parameters,including arc⁃gap radius,plate thickness,rivet arc radius,nail head radius,groove width,and feeding amount,while keeping other parameters constant.This approach provides a theoretical foundation for the design of Friction Stir Processing(FSP)joints and aids in the selection of optimal parameters.展开更多
基金the National Natural Science Foundation of China (Grant No. 19631040)
文摘This paper based on the essay [1], studies in case that replicated observations are available in some experimental points., the parameters estimation of one dimensional linear errors-in-variables (EV) models. Asymptotic normality is established.
基金Supported by Visiting Scholar Foundation of KeyLabin University and National Lab of Switching Technology and Tele-communication Networks ([2000]123)
文摘This paper proposes a new primary lazy update protocol, PTCS (Primary Transaction Commit Schedule). In the PTCS protocol, a serializable primary transaction schedule is generated firstly and then the secondary transactions are committed according to the serializable primary transaction schedule. PTCS protocol can guarantee serializability if the data copy graph contains no directed circles. It can also be ex tended to eliminate all requirements on the data copy graph. Compared to earlier works, PTCS protocol not only imposes a much weaker requirement on the data placement, but also avoids the deadlock caused by transaction waits and extra message overhead. The performance experiments show that the degradation of the performance caused by the replica man- agement of the PTCS protocol is tolerable.
基金The NSF (10661003) of Chinathe NSF (1012138,0612163) of Guangdong Ocean University
文摘In this paper, empirical Bayes test for a parameter θ of two-parameter exponential distribution is investigated with replicated past data. Under some conditions, the asymptotically optimal property is obtained. It is indicated that the rate of convergence can be very close to O(N-2^-1) in this case that a parameter μ is known.
文摘Marbling, defined by the amount and the distribution of intramuscular fat and measured as beef marbling score (BMS), is an economically important trait of beef cattle in Japan. We recently reported that a single nucleotide polymorphism (SNP), namely, c.-312A > G, in the endothelial differentiation sphingolipid G-proteincoupled receptor, 1 (EDG1) gene was associated with the BMS level in the Japanese Black beef cattle population of Oita prefecture, with the G allele being associated with a high level of the BMS. Thus, the c.-312A > G SNP seems to be a candidate marker for marker-assisted selection. In this study, we investigated whether this association could be replicated in the Japanese Black beef cattle population of Niigata prefecture and analyzed the effect of the SNP genotypes on the carcass traits other than the BMS. No significant differences in the BMS level were detected among the genotypes of the c.-312A > G SNP in the Niigata Japanese Black beef cattle population. The SNP genotype had no significant effects on the carcass weight, rib eye area and rib thickness of the cattle population. These findings suggested that the association of the c.-312A > G SNP with the BMS level in the Japanese Black beef cattle population was not replicated in the Niigata population, and revealed no effects of the SNP genotype on the beef productivity in the Niigata population. Thus, we concluded that the c.-312A > G SNP is not useful for effective marker-assisted selection to increase meat quality and, additionally, meat productivity in Japanese Black beef cattle of Niigata prefecture.
文摘Marbling is regarded as an economically important trait of beef cattle inJapan, and measured as a beef marbling score (BMS). Our previous study reported an association between a single nucleotide polymorphism (SNP), rs4164 8172, in the pancreatic lipase (PNLIP) gene and the BMS level, using the Japanese Black beef cattle population of Oita prefecture. Further, we showed that the T allele at the rs41648172 SNP is associated with a high level of the BMS. Thus, we suggested that the rs41648172 SNP seems to be a candidate marker for marker-assisted selection. Our present study was designed to investigate whether this association could be replicated in other independent Japanese Black cattle population and analyze the effect of the SNP genotypes on the carcass traits other than the BMS. We detected the marginally significant effect of the genotypes of the rs41648172 SNP on the BMS level by using the Japanese Black beef cattle population of Niigata prefecture (P = 0.0919), and obtained the result of the T allele associated with an increase in the BMS level, consistent with our previous data. In addition, we showed no significant association of the SNP with the subcutaneous fat thickness, carcass weight, rib eye area, rib thickness and yield estimate in the Japanese Black beef cattle population ofNiigataprefecture. Thus, we concluded that the rs41648172 SNP was useful for effective marker-assisted selection to increase the BMS level in Japanese Black beef cattle, based on the replicated association of the rs41648172 SNP with the BMS level in the other independent Japanese Black beef cattle population and no effect of the SNP genotypes on the carcass traits other than BMS.
文摘Each rock joint is unique by nature which means that utilization of replicas in direct shear tests is required in experimental parameter studies.However,a method to acquire knowledge about the ability of the replicas to imitate the shear mechanical behavior of the rock joint and their dispersion in direct shear testing is lacking.In this study,a novel method is presented for geometric quality assurance of replicas.The aim is to facilitate generation of high-quality direct shear testing data as a prerequisite for reliable subsequent analyses of the results.In Part 1 of this study,two quality assurance parameters,smf and V_(Hp100),are derived and their usefulness for evaluation of geometric deviations,i.e.geometric reproducibility,is shown.In Part 2,the parameters are validated by showing a correlation between the parameters and the shear mechanical behavior,which qualifies the parameters for usage in the quality assurance method.Unique results from direct shear tests presenting comparisons between replicas and the rock joint show that replicas fulfilling proposed threshold values of σ_(mf)<0.06 mm and|V_(Hp100)|<0.2 mm have a narrow dispersion and imitate the shear mechanical behavior of the rock joint in all aspects apart from having a slightly lower peak shear strength.The wear in these replicas,which have similar morphology as the rock joint,is in the same areas as in the rock joint.The wear is slightly larger in the rock joint and therefore the discrepancy in peak shear strength derives from differences in material properties,possibly from differences in toughness.It is shown by application of the suggested method that the quality assured replicas manufactured following the process employed in this study phenomenologically capture the shear strength characteristics,which makes them useful in parameter studies.
基金partially supported through NSF-DMS 0443855NSF ECS 0601528+1 种基金NIH EB009235the short-lived W.M.Keck Foundation Grant#062014.
文摘There is considerable interest in quantitatively measuring nucleic acids from single cells to small populations. The most commonly employed laboratory method is the real-time polymerase chain reaction (PCR) analyzed with the crossing point or crossing threshold (Ct) method. Utilizing a multiwell plate reader we have performed hundreds of replicate reactions each at a set of initial conditions whose initial number of copies span a concentration range of ten orders of magnitude. The resultant Ct value distributions are analyzed with standard and novel statistical techniques to assess the variability/reliability of the PCR process. Our analysis supports the following conclusions. Given sufficient replicates, the mean and/or median Ct values are statistically distinguishable and can be rank ordered across ten orders of magnitude in initial template concentration. As expected, the variances in the Ct distributions grow as the number of initial copies declines to 1. We demonstrate that these variances are large enough to confound quantitative classi?cation of the initial condition at low template concentrations. The data indicate that a misclassi?cation transition is centered around 3000 initial copies of template DNA and that the transition region correlates with independent data on the thermal wear of the TAQ polymerase enzyme. We provide data that indicate that an alternative endpoint detection strategy based on the theory of well mixing and plate ?lling statistics is accurate below the mis- classi?cation transition where the real time method becomes unreliable.
基金Supported by Changsha Natural Science Foundation(No.kq2208001)the Key Project Funded by Hunan Provincial Department of Education(No.21A0590)。
文摘Determining the crossing number of a given graph is NP-complete. The cycle of length m is denoted by Cm = v1v2…vmv1. G^((1))_(m) (m ≥ 5) is the graph obtained from Cm by adding two edges v1v3 and vlvl+2 (3 ≤ l ≤ m−2), G^((2))m (m ≥ 4) is the graph obtained from Cm by adding two edges v1v3 and v2v4. The famous Zarankiewicz’s conjecture on the crossing number of the complete bipartite graph Km,n states that cr(Km,n)=Z(m,n)=[m/2][m-1/2][n/2[n-1/2].Based on Zarankiewicz’s conjecture, a natural problem is to study the change in the crossingnumber of the graphs obtained from the complete bipartite graph by adding certain edge sets.If Zarankiewicz’s conjecture is true, this paper proves that cr(G^((1))_(m)+Kn)=Z(m,n)+2[n/2] and cr(G^((2))_(m)+Kn)=Z(m,n)+n.
基金supported by"Regional Innovation Strategy(RIS)"through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-003)supported by the Technology Innovation Program(Development of design for additive manufacturing technology and low alloy steel materials with tensile strength 1.0 GPa for next-generation components,20024345)funded by the Ministry of Trade,Industry,and Energy(MOTIE,Korea)supported by the National Research Foundation of Korea(NRF)grants funded by the Ministry of Science and ICT(MSIT)(NRF-2021R1A2C3005096).
文摘The effect of current density on electrically assisted solid-state bulk joining,so-called electrically assisted pressure joining(EAPJ),of copper(Cu)C11000 and aluminum(Al)6061-T6 alloys is investigated.During EAPJ,various combinations of electric current density and duration are applied to the cylindrical specimen assembly to reach a fixed peak temperature during continuous axial compressive plastic deformation.Then,an additional electric current is periodically applied to the specimen assembly without plastic deformation to keep the temperature elevated.Microstructural observation confirms that the defect-free joint of the selected material combination is fabricated without melting and solidification.The athermal effect of electric current on the diffusion enhancement can be accommodated by introducing the effective activation energy or the effective temperature.The microstructural analysis also demonstrates that the current density both increases the thickness of the intermetallic compound(IMC)layer at the joint interface and affects the microstructural evolution of joining materials.Finally,the mechanical properties of the joint are strongly affected by the electric current density.The present study provides insight into the effect of electric current density on the solid-state joining mechanism of EAPJ of dissimilar material combinations.
基金supported by grants from the National Natural Science Foundation of China(32170238,32400191)Guangdong Basic and Applied Basic Research Foundation(2023A1515111029)+2 种基金the Science,Technology and Innovation Commission of Shenzhen Municipality(RCYX20200714114538196)the Chinese Academy of Agricultural Sciences Elite Youth Program(grant 110243160001007)the Guangdong Pearl River Talent Program(2021QN02N792)。
文摘Single-stranded DNA-binding proteins(SSBs)play essential roles in the replication,recombination and repair processes of organellar DNA molecules.In Arabidopsis thaliana,SSBs are encoded by a small family of two genes(SSB1 and SSB2).However,the functional divergence of these two SSB copies in plants remains largely unknown,and detailed studies regarding their roles in the replication and recombination of organellar genomes are still incomplete.In this study,phylogenetic,gene structure and protein motif analyses all suggested that SSB1 and SSB2 probably diverged during the early evolution of seed plants.Based on accurate long-read sequencing results,ssb1 and ssb2 mutants had decreased copy numbers for both mitochondrial DNA(mtDNA)and plastid DNA(ptDNA),accompanied by a slight increase in structural rearrangements mediated by intermediate-sized repeats in mt genome and small-scale variants in both genomes.Our findings provide an important foundation for further investigating the effects of DNA dosage in the regulation of mutation frequencies in plant organellar genomes.
基金supported by the National Natural Science Foundation of China(32372116)to Yan He.
文摘Chromosomal DNA double-strand breaks(DSBs)are often generated in the genome of all living organisms.To combat DNA damage,organisms have evolved several DSB repair mechanisms,with nonhomologous end-joining(NHEJ)and homologous recombination(HR)being the two most prominent.Although two major pathways have been extensively studied in Arabidopsis,rice and other mammals,the exact functions and differences between the two DSB repair pathways in maize still remain less well understood.Here,we characterized mre11a and rad50,mutants of HR pathway patterns,which showed drastic degradation of the typically persistent embryo and endosperm during kernel development.Loss of MRE11 or RAD50 function led to chromosomal fragments and chromosomal bridges in anaphase.While we also reported that the NHEJ pathway patterns,KU70 and KU80 are associated with developmental growth and genome stability.ku70 and ku80 both displayed an obvious dwarf phenotype.Cytological analysis of the mutants revealed extensive chromosome fragmentation in metaphase and subsequent stages.Loss of KU70/80 function upregulated the expression of genes involved in cell cycle progression and nuclear division.These results provide insights into how NHEJ and HR are mechanistically executed during different plant developmental periods and highlight a competitive and complementary relationship between the NHEJ and HR pathways for DNA double-strand break repair in maize.
基金supported by the Applied Basic Research Programs of Science and Technology Commission Foundation of Yunnan Province(202401AT070186 to K.Q.L.,202201AS070044 to B.Z.)Yunnan Province(202305AH340006 to B.Z.)Kunming Science and Technology Bureau(2022SCP007 to B.Z.)。
文摘The DNA replication stress(RS)response is crucial for maintaining cellular homeostasis and promoting physiological longevity.However,the mechanisms by which long-lived species,such as bats,regulate RS to maintain genomic stability remain unclear.Also,recent studies have uncovered noncanonical roles of ribosome-associated factors in maintaining genomic stability.In this study,somatic skin fibroblasts from the long-lived big-footed bat(Myotis pilosus)were examined,with results showing that bat cells exhibited enhanced RS tolerance compared to mouse cells.Comparative transcriptome analysis under RS conditions revealed pronounced species-specific transcriptional differences,including robust up-regulation of ribosome biogenesis genes in bat cells and a markedly reduced activation of the P53 signaling pathway.These features emphasize a distinct homeostatic strategy in bat cells.Nuclear fragile X mental retardation-interacting protein 1(Nufip1),a ribosome-associated factor highly expressed in bat fibroblasts,was identified as a potential integrator of ribosomal and P53 signaling via its association with ribosomal protein S27-like(Rps27l).These findings provide direct cellular and molecular evidence for a noncanonical RS response in bats,highlighting a deeper understanding of the biological characteristics and genomic maintenance mechanisms of long-lived species.
文摘Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.
基金supported by grants from the National Natural Science Foundation of China(32071236)the National Science Fund for Distinguished Young Scholars(32225001)+6 种基金the 1.3.5 Project for Disciplines Excellence of West China Hospital,Sichuan University(ZYGD23018)Key Science and Technology Research Projects in Key Areas of the Corps(2023AB053)the National Key Research and Development Program of China(2022YFC2303700)the Joint Project of Pengzhou People's Hospital with Southwest Medical University(2024PZXNYD02)Project funded by China Postdoctoral Science Foundation(2020M683304)Sichuan Science and Technology Support Project(2021YJ0502)Post-Doctor Research Project,West China Hospital,Sichuan University(2020HXBH082).
文摘Virus-encoding RNA-dependent RNA polymerase(RdRp)is essential for genome replication and gene transcription of human coronaviruses(HCoVs),including severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).We previously identified the interaction between the catalytic subunit NSP12 of SARS-CoV-2 RdRp and the host protein CREB-regulated transcription coactivator 3(CRTC3),a member of the CRTC family that regulates cyclic AMP response element-binding protein(CREB)-mediated transcriptional activation.Currently,the implication of CRTC3 in the pathogenesis of HCoVs is poorly understood.Herein,we demonstrated that CRTC3 attenuates RdRp activity and SARS-CoV-2 genome replication,therefore reducing the production of progeny viruses.The interaction of CRTC3 with NSP12 contributes to its inhibitory effect on RdRp activity.Furthermore,we expanded the suppressive effects of two other CRTC family members(CRTC1 and CRTC2)on the RdRp activities of lethal HCoVs,including SARS-CoV-2 and Middle East respiratory syndrome coronavirus(MERS-CoV),along with the CREB antagonization.Overall,our research suggests that CRTCs restrict the replication of HCoVs and are antagonized by CREB,which not only provides new insights into the replication regulation of HCoVs,but also offers important information for the development of anti-HCoV interventions.
文摘The development and application of large Die⁃Casting Al Alloy(DCAA)parts and Thermo⁃Formed Steel Sheets(TFSS)in Body⁃in⁃White(BIW)have created higher demands for the joining technology of high⁃strength steel/Al dissimilar materials.As an emerging technology,Flush Self⁃Piercing Riveting(FSPR)is still in the experimental phase and undergoing small batch equipment verification.This paper focuses on the joining methods for DCAA and TFSS in BIW,investigating the joining mechanisms,technical features,and forming principles of FSPR for steel/Al dissimilar materials with two⁃layer or three⁃layer plate combinations.Considering the TL4225/C611/CR5 sheet combination as a subject,the forming mechanism of high⁃quality joints was studied,and a physical and mathematical model was established to depict the relationship between the filling amount of the arc⁃gap and die dimensions,as well as the extrusion amount.This model effectively illustrates the relationship between the filling amount of the flowing metal in the arc⁃gap and critical parameters,such as die dimensions and feeding amounts.By simplifying the process of selecting joining parameters,it significantly reduces both the time and experimental workload associated with parameter selection.This provides a technical foundation for the application of DAAA and TFSS parts in BIW,enabling the rapid choice of appropriate joining parameters to meet the requirements for obtaining high⁃quality joints.The model can be effectively utilized to investigate the relationships between key parameters,including arc⁃gap radius,plate thickness,rivet arc radius,nail head radius,groove width,and feeding amount,while keeping other parameters constant.This approach provides a theoretical foundation for the design of Friction Stir Processing(FSP)joints and aids in the selection of optimal parameters.