期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The Nonorientable Genus of the Join of Two Cycles
1
作者 Deng Ju MA Han REN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第12期2305-2320,共16页
In this paper, we show that the nonorientable genus of Cm + Cn, the join of two cycles Cm and Cn, is equal to [((m-2)(n-2))/2] if m = 3, n ≡ 1 (mod 2), or m ≥ 4, n ≥ 4, (m, n) (4, 4). We determine that... In this paper, we show that the nonorientable genus of Cm + Cn, the join of two cycles Cm and Cn, is equal to [((m-2)(n-2))/2] if m = 3, n ≡ 1 (mod 2), or m ≥ 4, n ≥ 4, (m, n) (4, 4). We determine that the nonorientable genus of C4 +C4 is 3, and that the nonorientable genus of C3 +Cn is n/2 if n ≡ 0 (mod 2). Our results show that a minimum nonorientable genus embedding of the complete bipartite graph Km,n cannot be extended to an embedding of the join of two cycles without increasing the genus of the surface. 展开更多
关键词 SURFACE nonorientable genus of a graph the join of two graphs
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部