This study introduces an innovative approach to optimize cloud computing job distribution using the Improved Dynamic Johnson Sequencing Algorithm(DJS).Emphasizing on-demand resource sharing,typical to Cloud Service Pr...This study introduces an innovative approach to optimize cloud computing job distribution using the Improved Dynamic Johnson Sequencing Algorithm(DJS).Emphasizing on-demand resource sharing,typical to Cloud Service Providers(CSPs),the research focuses on minimizing job completion delays through efficient task allocation.Utilizing Johnson’s rule from operations research,the study addresses the challenge of resource availability post-task completion.It advocates for queuing models with multiple servers and finite capacity to improve job scheduling models,subsequently reducing wait times and queue lengths.The Dynamic Johnson Sequencing Algorithm and the M/M/c/K queuing model are applied to optimize task sequences,showcasing their efficacy through comparative analysis.The research evaluates the impact of makespan calculation on data file transfer times and assesses vital performance indicators,ultimately positioning the proposed technique as superior to existing approaches,offering a robust framework for enhanced task scheduling and resource allocation in cloud computing.展开更多
智能车辆上的时延敏感型任务对计算能力的要求很高,然而请求车辆上可用的计算资源有限不足以单独处理整个任务数据,很难满足时延需求。车辆雾计算(Vehicle Fog Computing,VFC)通过在请求车辆附近进行计算卸载来改善车辆服务。文中基于...智能车辆上的时延敏感型任务对计算能力的要求很高,然而请求车辆上可用的计算资源有限不足以单独处理整个任务数据,很难满足时延需求。车辆雾计算(Vehicle Fog Computing,VFC)通过在请求车辆附近进行计算卸载来改善车辆服务。文中基于两阶段生产计划对计算卸载过程进行建模,提出了一种计算卸载算法(Computation Offloading Algorithm,COA)来优化卸载决策和执行顺序,从而降低计算卸载时延。COA在遗传算法(Genetic Algorithm,GA)的基础上应用了Johnson Rules决定卸载顺序。通过SUMO和MATLAB仿真,显示出与GA相比,在相同的迭代次数下,COA具有更低的平均卸载时延和更好的稳定性。展开更多
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project(No.PNURSP2023R97)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘This study introduces an innovative approach to optimize cloud computing job distribution using the Improved Dynamic Johnson Sequencing Algorithm(DJS).Emphasizing on-demand resource sharing,typical to Cloud Service Providers(CSPs),the research focuses on minimizing job completion delays through efficient task allocation.Utilizing Johnson’s rule from operations research,the study addresses the challenge of resource availability post-task completion.It advocates for queuing models with multiple servers and finite capacity to improve job scheduling models,subsequently reducing wait times and queue lengths.The Dynamic Johnson Sequencing Algorithm and the M/M/c/K queuing model are applied to optimize task sequences,showcasing their efficacy through comparative analysis.The research evaluates the impact of makespan calculation on data file transfer times and assesses vital performance indicators,ultimately positioning the proposed technique as superior to existing approaches,offering a robust framework for enhanced task scheduling and resource allocation in cloud computing.