The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-objec...The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-object problem, such as the fuzzy cost, the fuzzy due-date, and the fuzzy makespan, etc, can be solved by FGFJSP. To optimize FGFJSP, an individual optimization and colony diversity genetic algorithm (IOCDGA) is presented to accelerate the convergence speed and to avoid the earliness. In IOCDGA, the colony average distance and the colony entropy are defined after the definition of the encoding model. The colony diversity is expressed by the colony average distance and the colony entropy. The crossover probability and the mutation probability are controlled by the colony diversity. The evolution emphasizes that sigle individual or a few individuals evolve into the best in IOCDGA, but not the all in classical GA. Computational results show that the algorithm is applicable and the number of iterations is less.展开更多
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ...An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.展开更多
The meta-heuristic algorithm with local search is an excellent choice for the job-shop scheduling problem(JSP).However,due to the unique nature of the JSP,local search may generate infeasible neighbourhood solutions.I...The meta-heuristic algorithm with local search is an excellent choice for the job-shop scheduling problem(JSP).However,due to the unique nature of the JSP,local search may generate infeasible neighbourhood solutions.In the existing literature,although some domain knowledge of the JSP can be used to avoid infeasible solutions,the constraint conditions in this domain knowledge are sufficient but not necessary.It may lose many feasible solutions and make the local search inadequate.By analysing the causes of infeasible neighbourhood solutions,this paper further explores the domain knowledge contained in the JSP and proposes the sufficient and necessary constraint conditions to find all feasible neighbourhood solutions,allowing the local search to be carried out thoroughly.With the proposed conditions,a new neighbourhood structure is designed in this paper.Then,a fast calculation method for all feasible neighbourhood solutions is provided,significantly reducing the calculation time compared with ordinary methods.A set of standard benchmark instances is used to evaluate the performance of the proposed neighbourhood structure and calculation method.The experimental results show that the calculation method is effective,and the new neighbourhood structure has more reliability and superiority than the other famous and influential neighbourhood structures,where 90%of the results are the best compared with three other well-known neighbourhood structures.Finally,the result from a tabu search algorithm with the new neighbourhood structure is compared with the current best results,demonstrating the superiority of the proposed neighbourhood structure.展开更多
This paper presents a new genetic algorithm for job-shop scheduling problem. Based on schema theorem and building block hypothesis, a new crossover is proposed. By selecting short, low-order, highly fit schemas for ge...This paper presents a new genetic algorithm for job-shop scheduling problem. Based on schema theorem and building block hypothesis, a new crossover is proposed. By selecting short, low-order, highly fit schemas for genetic operator, the crossover can maintain a diversity of population without disrupting the characteristics and search the global optimization. Simulation results on famous benchmark problems MT06, MT10 and MT20 coded by Matlab show that our genetic operators are suitable to job-shop scheduling problems and outperform the previous GA-based approaches.展开更多
In this paper, we propose a new genetic algorithm for job-shop scheduling problems (JSP). The proposed method uses the operation-based representation, based on schema theorem and building block hypothesis, a new cro...In this paper, we propose a new genetic algorithm for job-shop scheduling problems (JSP). The proposed method uses the operation-based representation, based on schema theorem and building block hypothesis, a new crossover is proposed : By selecting short, low order highly fit schemas to genetic operator, the crossover can exchange meaningful ordering information of parents effectively and can search the global optimization. Simulation results on MT benchmark problem coded by C + + show that our genetic operators are very powerful and suitable to job-shop scheduling problems and our method outperforms the previous GA-based approaches.展开更多
The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors ...The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.展开更多
The issue of reducing energy consumption for the job-shop scheduling problem in machining systems is addressed, whose dual objectives are to minimize both the energy consumption and the makespan. First, the bi- object...The issue of reducing energy consumption for the job-shop scheduling problem in machining systems is addressed, whose dual objectives are to minimize both the energy consumption and the makespan. First, the bi- objective model for the job-shop scheduling problem is proposed. The objective function value of the model represents synthesized optimization of energy consumption and makespan. Then, a heuristic algorithm is developed to locate the optimal or near optimal solutions of the model based on the Tabu search mechanism. Finally, the experimental case is presented to demonstrate the effectiveness of the proposed model and the algorithm.展开更多
A modified bottleneck-based (MB) heuristic for large-scale job-shop scheduling problems with a welldefined bottleneck is suggested, which is simpler but more tailored than the shifting bottleneck (SB) procedure. I...A modified bottleneck-based (MB) heuristic for large-scale job-shop scheduling problems with a welldefined bottleneck is suggested, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, the bottleneck is first scheduled optimally while the non-bottleneck machines are subordinated around the solutions of the bottleneck schedule by some effective dispatching rules. Computational results indicate that the MB heuristic can achieve a better tradeoff between solution quality and computational time compared to SB procedure for medium-size problems. Furthermore, it can obtain a good solution in a short time for large-scale jobshop scheduling problems.展开更多
To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transfo...To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transformed into Markov decision process,and six state features are designed to improve the state feature representation by using two-way scheduling method,including four state features that distinguish the optimal action and two state features that are related to the learning goal.An extended variant of graph isomorphic network GIN++is used to encode disjunction graphs to improve the performance and generalization ability of the model.Through iterative greedy algorithm,random strategy is generated as the initial strategy,and the action with the maximum information gain is selected to expand it to optimize the exploration ability of Actor-Critic algorithm.Through validation of the trained policy model on multiple public test data sets and comparison with other advanced DRL methods and scheduling rules,the proposed method reduces the minimum average gap by 3.49%,5.31%and 4.16%,respectively,compared with the priority rule-based method,and 5.34%compared with the learning-based method.11.97%and 5.02%,effectively improving the accuracy of DRL to solve the approximate solution of JSSP minimum completion time.展开更多
The technology of production planning and scheduling is one of the critical technologies that decide whether the automated manufacturing systems can get the expected economy. Job shop scheduling belongs to the special...The technology of production planning and scheduling is one of the critical technologies that decide whether the automated manufacturing systems can get the expected economy. Job shop scheduling belongs to the special class of NP-hard problems. Most of the algorithms used to optimize this class of problems have an exponential time; that is, the computation time increases exponentially with problem size. In scheduling study, makespan is often considered as the main objective. In this paper, makespan, the due date request of the key jobs, the availability of the key machine, the average wait-time of the jobs, and the similarities between the jobs and so on are taken into account based on the application of mechanical engineering. The job shop scheduling problem with multi-objectives is analyzed and studied by using genetic algorithms based on the mechanics of genetics and natural selection. In this research, the tactics of the coding and decoding and the design of the genetic operators, along with the description of the mathematic model of the multi-objective functions, are presented. Finally an illu-strative example is given to testify the validity of this algorithm.展开更多
Aircraft assembly is characterized by stringent precedence constraints,limited resource availability,spatial restrictions,and a high degree of manual intervention.These factors lead to considerable variability in oper...Aircraft assembly is characterized by stringent precedence constraints,limited resource availability,spatial restrictions,and a high degree of manual intervention.These factors lead to considerable variability in operator workloads and significantly increase the complexity of scheduling.To address this challenge,this study investigates the Aircraft Pulsating Assembly Line Scheduling Problem(APALSP)under skilled operator allocation,with the objective of minimizing assembly completion time.A mathematical model considering skilled operator allocation is developed,and a Q-Learning improved Particle Swarm Optimization algorithm(QLPSO)is proposed.In the algorithm design,a reverse scheduling strategy is adopted to effectively manage large-scale precedence constraints.Moreover,a reverse sequence encoding method is introduced to generate operation sequences,while a time decoding mechanism is employed to determine completion times.The problem is further reformulated as a Markov Decision Process(MDP)with explicitly defined state and action spaces.Within QLPSO,the Q-learning mechanism adaptively adjusts inertia weights and learning factors,thereby achieving a balance between exploration capability and convergence performance.To validate the effectiveness of the proposed approach,extensive computational experiments are conducted on benchmark instances of different scales,including small,medium,large,and ultra-large cases.The results demonstrate that QLPSO consistently delivers stable and high-quality solutions across all scenarios.In ultra-large-scale instances,it improves the best solution by 25.2%compared with the Genetic Algorithm(GA)and enhances the average solution by 16.9%over the Q-learning algorithm,showing clear advantages over the comparative methods.These findings not only confirm the effectiveness of the proposed algorithm but also provide valuable theoretical references and practical guidance for the intelligent scheduling optimization of aircraft pulsating assembly lines.展开更多
This research develops a mathematical model for the integrated lot-sizing and job-shop scheduling problem in which supplier selection and purchase lot-sizing are incorporated into the production lot-sizing problem.A C...This research develops a mathematical model for the integrated lot-sizing and job-shop scheduling problem in which supplier selection and purchase lot-sizing are incorporated into the production lot-sizing problem.A Chance Constrained Programming(CCP)approach is applied to formulate them in a General Lot-sizing and Scheduling Problem(GLSP)model.Some numerical experiments are performed to evaluate the efficiency of the model’s results.The computational analysis indicates that when the production and purchase lot-sizing decisions are taken simultaneously,combined cost of production and purchase(and thus the total cost)is lower than when these decisions are made hierarchically.The average cost of the integrated model is 4.03%less than the non-integrated model.This improvement is mostly made in the purchase lot-sizing cost because through applying the integrated model,the company can recognize the best time of procuring materials from the best suppliers and use their discount schemes.展开更多
A new heuristic algorithm is proposed for the problem of finding the minimummakespan in the job-shop scheduling problem. The new algorithm is based on the principles ofparticle swarm optimization (PSO). PSO employs a ...A new heuristic algorithm is proposed for the problem of finding the minimummakespan in the job-shop scheduling problem. The new algorithm is based on the principles ofparticle swarm optimization (PSO). PSO employs a collaborative population-based search, which isinspired by the social behavior of bird flocking. It combines local search (by self experience) andglobal search (by neighboring experience), possessing high search efficiency. Simulated annealing(SA) employs certain probability to avoid becoming trapped in a local optimum and the search processcan be controlled by the cooling schedule. By reasonably combining these two different searchalgorithms, a general, fast and easily implemented hybrid optimization algorithm, named HPSO, isdeveloped. The effectiveness and efficiency of the proposed PSO-based algorithm are demonstrated byapplying it to some benchmark job-shop scheduling problems and comparing results with otheralgorithms in literature. Comparing results indicate that PSO-based algorithm is a viable andeffective approach for the job-shop scheduling problem.展开更多
Job-shop scheduling problem with discretely controllable processing times (JSP-DCPT) is modeled based on the disjunctive graph, and the formulation of JSP-DCPT is presented. A three-step decomposition approach is prop...Job-shop scheduling problem with discretely controllable processing times (JSP-DCPT) is modeled based on the disjunctive graph, and the formulation of JSP-DCPT is presented. A three-step decomposition approach is proposed so that JSP-DCPT can be handled by solving a job-shop scheduling problem (JSP) and a series of discrete time-cost tradeoff problems. To simplify the decomposition approach, the time-cost phase plane is introduced to describe tradeoffs of the discrete time-cost tradeoff problem, and an extreme mode-based set dominant theory is elaborated so that an upper bound is determined to cut discrete time-cost tradeoff problems generated by using the proposed decomposition approach. An extreme mode-based set dominant decomposition algorithm (EMSDDA) is then proposed. Experimental simulations for instance JSPDCPT_FT10, which is designed based on a JSP benchmark FT10, demonstrate the effectiveness of the proposed theory and the decomposition approach.展开更多
Meta-heuristic algorithms search the problem solution space to obtain a satisfactory solution within a reasonable timeframe.By combining domain knowledge of the specific optimization problem,the search efficiency and ...Meta-heuristic algorithms search the problem solution space to obtain a satisfactory solution within a reasonable timeframe.By combining domain knowledge of the specific optimization problem,the search efficiency and quality of meta-heuristic algorithms can be significantly improved,making it crucial to identify and summarize domain knowledge within the problem.In this paper,we summarize and analyze domain knowledge that can be applied to meta-heuristic algorithms in the job-shop scheduling problem(JSP).Firstly,this paper delves into the importance of domain knowledge in optimization algorithm design.After that,the development of different methods for the JSP are reviewed,and the domain knowledge in it for meta-heuristic algorithms is summarized and classified.Applications of this domain knowledge are analyzed,showing it is indispensable in ensuring the optimization performance of meta-heuristic algorithms.Finally,this paper analyzes the relationship among domain knowledge,optimization problems,and optimization algorithms,and points out the shortcomings of the existing research and puts forward research prospects.This paper comprehensively summarizes the domain knowledge in the JSP,and discusses the relationship between the optimization problems,optimization algorithms and domain knowledge,which provides a research direction for the metaheuristic algorithm design for solving the JSP in the future.展开更多
The standard genetic algorithm has limitations of a low convergence rate and premature convergence in solving the job-shop scheduling problem.To overcome these limitations,this paper presents a new improved hybrid gen...The standard genetic algorithm has limitations of a low convergence rate and premature convergence in solving the job-shop scheduling problem.To overcome these limitations,this paper presents a new improved hybrid genetic algorithm on the basis of the idea of graft in botany.Through the introduction of a grafted population and crossover probability matrix,this algorithm accelerates the convergence rate greatly and also increases the ability to fight premature convergence.Finally,the approach is tested on a set of standard instances taken from the literature and compared with other approaches.The computation results validate the effectiveness of the proposed algorithm.展开更多
Knowledge plays an active role in job-shop scheduling, especially in dynamic environments. A novel case-based immune framework was developed for static and dynamic job-shop problems, using the associative memory and k...Knowledge plays an active role in job-shop scheduling, especially in dynamic environments. A novel case-based immune framework was developed for static and dynamic job-shop problems, using the associative memory and knowledge reuse from case-based reasoning (CBR) and immune response mechanisms. A 2-level similarity index which combines both job routing and problem solution characteristics based on DNA matching ideas was defined for both the CBR and immune algorithms. A CBR-embedded immune algorithms (CBR-IAs) framework was then developed focusing on case retrieval and adaptation methods. In static environments, the CBR-IAs have excellent population diversity and fast convergence which are necessary for dynamic problems with jobs arriving and leaving continually. The results with dy-namic scheduling problems further confirm the CBR-IAs effectiveness as a problem solving method with knowledge reuse.展开更多
文摘The fuzzy goal flexible job-shop scheduling problem (FGFJSP) is the extension of FJSP. Compared with the convention JSP, it can solve the fuzzy goal problem and meet suit requirements of the key job. The multi-object problem, such as the fuzzy cost, the fuzzy due-date, and the fuzzy makespan, etc, can be solved by FGFJSP. To optimize FGFJSP, an individual optimization and colony diversity genetic algorithm (IOCDGA) is presented to accelerate the convergence speed and to avoid the earliness. In IOCDGA, the colony average distance and the colony entropy are defined after the definition of the encoding model. The colony diversity is expressed by the colony average distance and the colony entropy. The crossover probability and the mutation probability are controlled by the colony diversity. The evolution emphasizes that sigle individual or a few individuals evolve into the best in IOCDGA, but not the all in classical GA. Computational results show that the algorithm is applicable and the number of iterations is less.
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
基金Supported by the National Natural Science Foundation of China(51175262)the Research Fund for Doctoral Program of Higher Education of China(20093218110020)+2 种基金the Jiangsu Province Science Foundation for Excellent Youths(BK201210111)the Jiangsu Province Industry-Academy-Research Grant(BY201220116)the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ10-09)
文摘An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.
基金Supported by National Natural Science Foundation of China(Grant Nos.U21B2029 and 51825502).
文摘The meta-heuristic algorithm with local search is an excellent choice for the job-shop scheduling problem(JSP).However,due to the unique nature of the JSP,local search may generate infeasible neighbourhood solutions.In the existing literature,although some domain knowledge of the JSP can be used to avoid infeasible solutions,the constraint conditions in this domain knowledge are sufficient but not necessary.It may lose many feasible solutions and make the local search inadequate.By analysing the causes of infeasible neighbourhood solutions,this paper further explores the domain knowledge contained in the JSP and proposes the sufficient and necessary constraint conditions to find all feasible neighbourhood solutions,allowing the local search to be carried out thoroughly.With the proposed conditions,a new neighbourhood structure is designed in this paper.Then,a fast calculation method for all feasible neighbourhood solutions is provided,significantly reducing the calculation time compared with ordinary methods.A set of standard benchmark instances is used to evaluate the performance of the proposed neighbourhood structure and calculation method.The experimental results show that the calculation method is effective,and the new neighbourhood structure has more reliability and superiority than the other famous and influential neighbourhood structures,where 90%of the results are the best compared with three other well-known neighbourhood structures.Finally,the result from a tabu search algorithm with the new neighbourhood structure is compared with the current best results,demonstrating the superiority of the proposed neighbourhood structure.
文摘This paper presents a new genetic algorithm for job-shop scheduling problem. Based on schema theorem and building block hypothesis, a new crossover is proposed. By selecting short, low-order, highly fit schemas for genetic operator, the crossover can maintain a diversity of population without disrupting the characteristics and search the global optimization. Simulation results on famous benchmark problems MT06, MT10 and MT20 coded by Matlab show that our genetic operators are suitable to job-shop scheduling problems and outperform the previous GA-based approaches.
文摘In this paper, we propose a new genetic algorithm for job-shop scheduling problems (JSP). The proposed method uses the operation-based representation, based on schema theorem and building block hypothesis, a new crossover is proposed : By selecting short, low order highly fit schemas to genetic operator, the crossover can exchange meaningful ordering information of parents effectively and can search the global optimization. Simulation results on MT benchmark problem coded by C + + show that our genetic operators are very powerful and suitable to job-shop scheduling problems and our method outperforms the previous GA-based approaches.
基金Supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program(Grant No.294931)National Science Foundation of China(Grant No.51175262)+1 种基金Jiangsu Provincial Science Foundation for Excellent Youths of China(Grant No.BK2012032)Jiangsu Provincial Industry-Academy-Research Grant of China(Grant No.BY201220116)
文摘The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.
文摘The issue of reducing energy consumption for the job-shop scheduling problem in machining systems is addressed, whose dual objectives are to minimize both the energy consumption and the makespan. First, the bi- objective model for the job-shop scheduling problem is proposed. The objective function value of the model represents synthesized optimization of energy consumption and makespan. Then, a heuristic algorithm is developed to locate the optimal or near optimal solutions of the model based on the Tabu search mechanism. Finally, the experimental case is presented to demonstrate the effectiveness of the proposed model and the algorithm.
基金the National Natural Science Foundation of China (6027401360474002)Shanghai Development Found for Science and Technology (04DZ11008).
文摘A modified bottleneck-based (MB) heuristic for large-scale job-shop scheduling problems with a welldefined bottleneck is suggested, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, the bottleneck is first scheduled optimally while the non-bottleneck machines are subordinated around the solutions of the bottleneck schedule by some effective dispatching rules. Computational results indicate that the MB heuristic can achieve a better tradeoff between solution quality and computational time compared to SB procedure for medium-size problems. Furthermore, it can obtain a good solution in a short time for large-scale jobshop scheduling problems.
基金Shaanxi Provincial Key Research and Development Project(2023YBGY095)and Shaanxi Provincial Qin Chuangyuan"Scientist+Engineer"project(2023KXJ247)Fund support.
文摘To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transformed into Markov decision process,and six state features are designed to improve the state feature representation by using two-way scheduling method,including four state features that distinguish the optimal action and two state features that are related to the learning goal.An extended variant of graph isomorphic network GIN++is used to encode disjunction graphs to improve the performance and generalization ability of the model.Through iterative greedy algorithm,random strategy is generated as the initial strategy,and the action with the maximum information gain is selected to expand it to optimize the exploration ability of Actor-Critic algorithm.Through validation of the trained policy model on multiple public test data sets and comparison with other advanced DRL methods and scheduling rules,the proposed method reduces the minimum average gap by 3.49%,5.31%and 4.16%,respectively,compared with the priority rule-based method,and 5.34%compared with the learning-based method.11.97%and 5.02%,effectively improving the accuracy of DRL to solve the approximate solution of JSSP minimum completion time.
基金Supported by National Information Industry Department (01XK310020)Shanghai Natural Science Foundation (No. 01ZF14004)
文摘The technology of production planning and scheduling is one of the critical technologies that decide whether the automated manufacturing systems can get the expected economy. Job shop scheduling belongs to the special class of NP-hard problems. Most of the algorithms used to optimize this class of problems have an exponential time; that is, the computation time increases exponentially with problem size. In scheduling study, makespan is often considered as the main objective. In this paper, makespan, the due date request of the key jobs, the availability of the key machine, the average wait-time of the jobs, and the similarities between the jobs and so on are taken into account based on the application of mechanical engineering. The job shop scheduling problem with multi-objectives is analyzed and studied by using genetic algorithms based on the mechanics of genetics and natural selection. In this research, the tactics of the coding and decoding and the design of the genetic operators, along with the description of the mathematic model of the multi-objective functions, are presented. Finally an illu-strative example is given to testify the validity of this algorithm.
基金supported by the National Natural Science Foundation of China(Grant No.52475543)Natural Science Foundation of Henan(Grant No.252300421101)+1 种基金Henan Province University Science and Technology Innovation Talent Support Plan(Grant No.24HASTIT048)Science and Technology Innovation Team Project of Zhengzhou University of Light Industry(Grant No.23XNKJTD0101).
文摘Aircraft assembly is characterized by stringent precedence constraints,limited resource availability,spatial restrictions,and a high degree of manual intervention.These factors lead to considerable variability in operator workloads and significantly increase the complexity of scheduling.To address this challenge,this study investigates the Aircraft Pulsating Assembly Line Scheduling Problem(APALSP)under skilled operator allocation,with the objective of minimizing assembly completion time.A mathematical model considering skilled operator allocation is developed,and a Q-Learning improved Particle Swarm Optimization algorithm(QLPSO)is proposed.In the algorithm design,a reverse scheduling strategy is adopted to effectively manage large-scale precedence constraints.Moreover,a reverse sequence encoding method is introduced to generate operation sequences,while a time decoding mechanism is employed to determine completion times.The problem is further reformulated as a Markov Decision Process(MDP)with explicitly defined state and action spaces.Within QLPSO,the Q-learning mechanism adaptively adjusts inertia weights and learning factors,thereby achieving a balance between exploration capability and convergence performance.To validate the effectiveness of the proposed approach,extensive computational experiments are conducted on benchmark instances of different scales,including small,medium,large,and ultra-large cases.The results demonstrate that QLPSO consistently delivers stable and high-quality solutions across all scenarios.In ultra-large-scale instances,it improves the best solution by 25.2%compared with the Genetic Algorithm(GA)and enhances the average solution by 16.9%over the Q-learning algorithm,showing clear advantages over the comparative methods.These findings not only confirm the effectiveness of the proposed algorithm but also provide valuable theoretical references and practical guidance for the intelligent scheduling optimization of aircraft pulsating assembly lines.
文摘This research develops a mathematical model for the integrated lot-sizing and job-shop scheduling problem in which supplier selection and purchase lot-sizing are incorporated into the production lot-sizing problem.A Chance Constrained Programming(CCP)approach is applied to formulate them in a General Lot-sizing and Scheduling Problem(GLSP)model.Some numerical experiments are performed to evaluate the efficiency of the model’s results.The computational analysis indicates that when the production and purchase lot-sizing decisions are taken simultaneously,combined cost of production and purchase(and thus the total cost)is lower than when these decisions are made hierarchically.The average cost of the integrated model is 4.03%less than the non-integrated model.This improvement is mostly made in the purchase lot-sizing cost because through applying the integrated model,the company can recognize the best time of procuring materials from the best suppliers and use their discount schemes.
基金This project is supported by National Natural Science Foundation of China (No.70071017).
文摘A new heuristic algorithm is proposed for the problem of finding the minimummakespan in the job-shop scheduling problem. The new algorithm is based on the principles ofparticle swarm optimization (PSO). PSO employs a collaborative population-based search, which isinspired by the social behavior of bird flocking. It combines local search (by self experience) andglobal search (by neighboring experience), possessing high search efficiency. Simulated annealing(SA) employs certain probability to avoid becoming trapped in a local optimum and the search processcan be controlled by the cooling schedule. By reasonably combining these two different searchalgorithms, a general, fast and easily implemented hybrid optimization algorithm, named HPSO, isdeveloped. The effectiveness and efficiency of the proposed PSO-based algorithm are demonstrated byapplying it to some benchmark job-shop scheduling problems and comparing results with otheralgorithms in literature. Comparing results indicate that PSO-based algorithm is a viable andeffective approach for the job-shop scheduling problem.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51075337, 50705076, 50705077)the Natural Sci-ence Basic Research Plan in Shaanxi Province of China (Grant No. 2009JQ9002)
文摘Job-shop scheduling problem with discretely controllable processing times (JSP-DCPT) is modeled based on the disjunctive graph, and the formulation of JSP-DCPT is presented. A three-step decomposition approach is proposed so that JSP-DCPT can be handled by solving a job-shop scheduling problem (JSP) and a series of discrete time-cost tradeoff problems. To simplify the decomposition approach, the time-cost phase plane is introduced to describe tradeoffs of the discrete time-cost tradeoff problem, and an extreme mode-based set dominant theory is elaborated so that an upper bound is determined to cut discrete time-cost tradeoff problems generated by using the proposed decomposition approach. An extreme mode-based set dominant decomposition algorithm (EMSDDA) is then proposed. Experimental simulations for instance JSPDCPT_FT10, which is designed based on a JSP benchmark FT10, demonstrate the effectiveness of the proposed theory and the decomposition approach.
基金supported by the National Natural Science Foundation of China(Nos.U21B2029 and 51825502).
文摘Meta-heuristic algorithms search the problem solution space to obtain a satisfactory solution within a reasonable timeframe.By combining domain knowledge of the specific optimization problem,the search efficiency and quality of meta-heuristic algorithms can be significantly improved,making it crucial to identify and summarize domain knowledge within the problem.In this paper,we summarize and analyze domain knowledge that can be applied to meta-heuristic algorithms in the job-shop scheduling problem(JSP).Firstly,this paper delves into the importance of domain knowledge in optimization algorithm design.After that,the development of different methods for the JSP are reviewed,and the domain knowledge in it for meta-heuristic algorithms is summarized and classified.Applications of this domain knowledge are analyzed,showing it is indispensable in ensuring the optimization performance of meta-heuristic algorithms.Finally,this paper analyzes the relationship among domain knowledge,optimization problems,and optimization algorithms,and points out the shortcomings of the existing research and puts forward research prospects.This paper comprehensively summarizes the domain knowledge in the JSP,and discusses the relationship between the optimization problems,optimization algorithms and domain knowledge,which provides a research direction for the metaheuristic algorithm design for solving the JSP in the future.
文摘The standard genetic algorithm has limitations of a low convergence rate and premature convergence in solving the job-shop scheduling problem.To overcome these limitations,this paper presents a new improved hybrid genetic algorithm on the basis of the idea of graft in botany.Through the introduction of a grafted population and crossover probability matrix,this algorithm accelerates the convergence rate greatly and also increases the ability to fight premature convergence.Finally,the approach is tested on a set of standard instances taken from the literature and compared with other approaches.The computation results validate the effectiveness of the proposed algorithm.
基金the National Natural Science Foundation of China (No. 60004010) and the National High-Tech Research and Development (863) Program of China (No. 2001AA411020)
文摘Knowledge plays an active role in job-shop scheduling, especially in dynamic environments. A novel case-based immune framework was developed for static and dynamic job-shop problems, using the associative memory and knowledge reuse from case-based reasoning (CBR) and immune response mechanisms. A 2-level similarity index which combines both job routing and problem solution characteristics based on DNA matching ideas was defined for both the CBR and immune algorithms. A CBR-embedded immune algorithms (CBR-IAs) framework was then developed focusing on case retrieval and adaptation methods. In static environments, the CBR-IAs have excellent population diversity and fast convergence which are necessary for dynamic problems with jobs arriving and leaving continually. The results with dy-namic scheduling problems further confirm the CBR-IAs effectiveness as a problem solving method with knowledge reuse.