期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
Modeling and performance evaluation of QoS-aware job scheduling of computational grids
1
作者 单志广 林闯 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期425-430,共6页
To achieve high quality of service (QoS) on computational grids, the QoS-aware job scheduling is investigated for a hierarchical decentralized grid architecture that consists of multilevel schedulers. An integrated ... To achieve high quality of service (QoS) on computational grids, the QoS-aware job scheduling is investigated for a hierarchical decentralized grid architecture that consists of multilevel schedulers. An integrated QoS-aware job dispatching policy is proposed, which correlates priorities of incoming jobs used for job selecting at the local scheduler of the grid node with the job dispatching policies at the global scheduler for computational grids. The stochastic high-level Petri net (SHLPN) model of a two-level hierarchy computational grid architecture is presented, and a model refinement is made to reduce the complexity of the model solution. A performance analysis technique based on the SHLPN is proposed to investigate the QoS-aware job scheduling policy. Numerical results show that the QoS-aware job dispatching policy outperforms the QoS-unaware job dispatching policy in balancing the high-priority jobs, and thus enables priority-based QoS. 展开更多
关键词 computational grids job scheduling quality of service (QoS) performance evaluation MODELING stochastic high-level Petri net (SHLPN)
在线阅读 下载PDF
Optimizing Big Data Retrieval and Job Scheduling Using Deep Learning Approaches
2
作者 Bao Rong Chang Hsiu-Fen Tsai Yu-Chieh Lin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期783-815,共33页
Big data analytics in business intelligence do not provide effective data retrieval methods and job scheduling that will cause execution inefficiency and low system throughput.This paper aims to enhance the capability... Big data analytics in business intelligence do not provide effective data retrieval methods and job scheduling that will cause execution inefficiency and low system throughput.This paper aims to enhance the capability of data retrieval and job scheduling to speed up the operation of big data analytics to overcome inefficiency and low throughput problems.First,integrating stacked sparse autoencoder and Elasticsearch indexing explored fast data searching and distributed indexing,which reduces the search scope of the database and dramatically speeds up data searching.Next,exploiting a deep neural network to predict the approximate execution time of a job gives prioritized job scheduling based on the shortest job first,which reduces the average waiting time of job execution.As a result,the proposed data retrieval approach outperforms the previous method using a deep autoencoder and Solr indexing,significantly improving the speed of data retrieval up to 53%and increasing system throughput by 53%.On the other hand,the proposed job scheduling algorithmdefeats both first-in-first-out andmemory-sensitive heterogeneous early finish time scheduling algorithms,effectively shortening the average waiting time up to 5%and average weighted turnaround time by 19%,respectively. 展开更多
关键词 Stacked sparse autoencoder Elasticsearch distributed indexing data retrieval deep neural network job scheduling
在线阅读 下载PDF
Resource Intensity Aware Job Scheduling in A Distributed Cloud
3
作者 HUANG Daochao ZHU Chunge ZHANG Hong LIU Xinran 《China Communications》 SCIE CSCD 2014年第A02期175-184,共10页
A Dominant Resource Fairness (DRF) based scheme for job scheduling in distributed cloud computing systems which was modeled as multi-job scheduling and multi-resource allocation coupling problem is proposed, where t... A Dominant Resource Fairness (DRF) based scheme for job scheduling in distributed cloud computing systems which was modeled as multi-job scheduling and multi-resource allocation coupling problem is proposed, where the resource pool is constructed from a large number of distributed heterogeneous servers, representing different points in the configuration space of resources such as processing, memory, storage and bandwidth. By introducing dominant resource share of jobs and virtual machines, the multi-job scheduling and multi-resource allocation joint mechanism significantly improves the cloud system's resource utilization, yet with a substantial reduction of job completion times. We show through experiments and case studies the superior performance of the algorithms in practice. 展开更多
关键词 job scheduling resource allocation cloud computing dominant resource fairness
在线阅读 下载PDF
A Dynamic Job Scheduling Algorithm for Parallel System
4
作者 张建 陆鑫达 加力 《Journal of Shanghai Jiaotong university(Science)》 EI 2003年第1期10-14,共5页
One of the fundamental problems in parallel and distributed systems is deciding how to allocate jobs to processors. The goals of job scheduling in a parallel environment are to minimize the parallel execution time of ... One of the fundamental problems in parallel and distributed systems is deciding how to allocate jobs to processors. The goals of job scheduling in a parallel environment are to minimize the parallel execution time of a job and try to balance the user’s desire with the system’s desire. The users always want their jobs be completed as quickly as possible, while the system wants to service as many jobs as possible. In this paper, a dynamic job scheduling algorithm was introduced. This algorithm tries to utilize the information of a practical system to allocate the jobs more evenly. The communication time between the processor and scheduler is overlapped with the computation time of the processor. So the communication overhead can be little. The principle of scheduling the job is based on the desirability of each processor. The scheduler would not allocate a new job to a processor that is already fully utilized. The execution efficiency of the system will be increased. This algorithm also can be reused in other complex algorithms. 展开更多
关键词 parallel system job scheduling dynamic scheduling job queue
在线阅读 下载PDF
A Heuristic for the Job Scheduling Problem with a Common Due Window on Parallel and Non-Identical Machines
5
作者 Huang Decai College of information Engineering, Zhejiang University of Technology,Hangzhou 310014, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第2期6-11,共6页
In this paper, we give a mathematical model for earliness-tardiness job scheduling problem with a common due window on parallel and non-identical machines. Because the job scheduling problem discussed in the paper con... In this paper, we give a mathematical model for earliness-tardiness job scheduling problem with a common due window on parallel and non-identical machines. Because the job scheduling problem discussed in the paper contains a problem of minimizing make-span, which is NP-complete on parallel and uniform machines, a heuristic algorithm is presented to find an approximate solution for the scheduling problem after proving an important theorem. Two numerical examples illustrate that the heuristic algorithm is very useful and effective in obtaining the near-optimal solution. 展开更多
关键词 Common due window job scheduling Earliness-tardiness JIT.
在线阅读 下载PDF
A Q-Learning-Assisted Co-Evolutionary Algorithm for Distributed Assembly Flexible Job Shop Scheduling Problems
6
作者 Song Gao Shixin Liu 《Computers, Materials & Continua》 2025年第6期5623-5641,共19页
With the development of economic globalization,distributedmanufacturing is becomingmore andmore prevalent.Recently,integrated scheduling of distributed production and assembly has captured much concern.This research s... With the development of economic globalization,distributedmanufacturing is becomingmore andmore prevalent.Recently,integrated scheduling of distributed production and assembly has captured much concern.This research studies a distributed flexible job shop scheduling problem with assembly operations.Firstly,a mixed integer programming model is formulated to minimize the maximum completion time.Secondly,a Q-learning-assisted coevolutionary algorithmis presented to solve themodel:(1)Multiple populations are developed to seek required decisions simultaneously;(2)An encoding and decoding method based on problem features is applied to represent individuals;(3)A hybrid approach of heuristic rules and random methods is employed to acquire a high-quality population;(4)Three evolutionary strategies having crossover and mutation methods are adopted to enhance exploration capabilities;(5)Three neighborhood structures based on problem features are constructed,and a Q-learning-based iterative local search method is devised to improve exploitation abilities.The Q-learning approach is applied to intelligently select better neighborhood structures.Finally,a group of instances is constructed to perform comparison experiments.The effectiveness of the Q-learning approach is verified by comparing the developed algorithm with its variant without the Q-learning method.Three renowned meta-heuristic algorithms are used in comparison with the developed algorithm.The comparison results demonstrate that the designed method exhibits better performance in coping with the formulated problem. 展开更多
关键词 Distributed manufacturing flexible job shop scheduling problem assembly operation co-evolutionary algorithm Q-learning method
在线阅读 下载PDF
An Effective Local Search Algorithm for Flexible Job Shop Scheduling in Intelligent Manufacturing Systems
7
作者 Junjie Zhang Zhipeng Lü +3 位作者 Junwen Ding Zhouxing Su Xinyu Li Liang Gao 《Engineering》 2025年第7期117-127,共11页
As one of the most classical scheduling problems,flexible job shop scheduling problems(FJSP)find widespread applications in modern intelligent manufacturing systems.However,the majority of meta-heuristic methods for s... As one of the most classical scheduling problems,flexible job shop scheduling problems(FJSP)find widespread applications in modern intelligent manufacturing systems.However,the majority of meta-heuristic methods for solving FJSP in the literature are population-based evolutionary algorithms,which are complex and time-consuming.In this paper,we propose a fast effective singlesolution based local search algorithm with an innovative adaptive weighting-based local search(AWLS)technique for solving FJSP.The adaptive weighting technique assigns weights to each operation and adaptively updates them during the exploration.AWLS integrates a Tabu Search strategy and the adaptive weighting technique to smooth the landscape of the search space and enhance the exploration diversity.Computational experiments on 313 well-known benchmark instances demonstrate that AWLS is highly competitive with state-of-the-art algorithms in terms of both solution quality and computational efficiency,despite of its simplicity.Specifically,AWLS improves the previous best-known results in the literature on 33 instances and match the best-known results on the remaining ones except for only one under the same time limit of up to 300 s.As a strongly non-deterministic polynomia(NP)-hard problem which has been extensively studied for nearly half a century,breaking the records on these classic instances is an arduous task.Nevertheless,AWLS establishes new records on 8 challenging instances whose previous best records were established by a state-of-the-art meta-heuristic algorithm and a famous industrial solver. 展开更多
关键词 job shop scheduling Adaptive weighting technique Intelligent manufacturing systems
在线阅读 下载PDF
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer 被引量:2
8
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
在线阅读 下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem 被引量:1
9
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
在线阅读 下载PDF
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem 被引量:1
10
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved Harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
在线阅读 下载PDF
Deep Reinforcement Learning Solves Job-shop Scheduling Problems 被引量:1
11
作者 Anjiang Cai Yangfan Yu Manman Zhao 《Instrumentation》 2024年第1期88-100,共13页
To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transfo... To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transformed into Markov decision process,and six state features are designed to improve the state feature representation by using two-way scheduling method,including four state features that distinguish the optimal action and two state features that are related to the learning goal.An extended variant of graph isomorphic network GIN++is used to encode disjunction graphs to improve the performance and generalization ability of the model.Through iterative greedy algorithm,random strategy is generated as the initial strategy,and the action with the maximum information gain is selected to expand it to optimize the exploration ability of Actor-Critic algorithm.Through validation of the trained policy model on multiple public test data sets and comparison with other advanced DRL methods and scheduling rules,the proposed method reduces the minimum average gap by 3.49%,5.31%and 4.16%,respectively,compared with the priority rule-based method,and 5.34%compared with the learning-based method.11.97%and 5.02%,effectively improving the accuracy of DRL to solve the approximate solution of JSSP minimum completion time. 展开更多
关键词 job shop scheduling problems deep reinforcement learning state characteristics policy network
原文传递
SOLVING FLEXIBLE JOB SHOP SCHEDULING PROBLEM BY GENETIC ALGORITHM 被引量:13
12
作者 乔兵 孙志峻 朱剑英 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期108-112,共5页
The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an oper... The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm. 展开更多
关键词 flexible job shop gene tic algorithm job shop scheduling
在线阅读 下载PDF
Improved Heuristic Job Scheduling Method to Enhance Throughput for Big Data Analytics 被引量:5
13
作者 Zhiyao Hu Dongsheng Li 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第2期344-357,共14页
Data-parallel computing platforms,such as Hadoop and Spark,are deployed in computing clusters for big data analytics.There is a general tendency that multiple users share the same computing cluster.The schedule of mul... Data-parallel computing platforms,such as Hadoop and Spark,are deployed in computing clusters for big data analytics.There is a general tendency that multiple users share the same computing cluster.The schedule of multiple jobs becomes a serious challenge.Over a long period in the past,the Shortest-Job-First(SJF)method has been considered as the optimal solution to minimize the average job completion time.However,the SJF method leads to a low system throughput in the case where a small number of short jobs consume a large amount of resources.This factor prolongs the average job completion time.We propose an improved heuristic job scheduling method,called the Densest-Job-Set-First(DJSF)method.The DJSF method schedules jobs by maximizing the number of completed jobs per unit time,aiming to decrease the average Job Completion Time(JCT)and improve the system throughput.We perform extensive simulations based on Google cluster data.Compared with the SJF method,the DJSF method decreases the average JCT by 23.19% and enhances the system throughput by 42.19%.Compared with Tetris,the job packing method improves the job completion efficiency by 55.4%,so that the computing platforms complete more jobs in a short time span. 展开更多
关键词 big data job scheduling job throughput job completion time job completion efficiency
原文传递
Infeasibility test algorithm and fast repair algorithm of job shop scheduling problem 被引量:1
14
作者 孙璐 黄志 +1 位作者 张惠民 顾文钧 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期88-91,共4页
To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algori... To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algorithm for modifying an infeasible solution of the JSSP to become a feasible solution is proposed for the general JSSP.The computational complexity of the test algorithm and the repair algorithm is both O(n) under the worst-case scenario,and O(2J+M) for the repair algorithm under the best-case scenario.The repair algorithm is not limited to specific optimization methods,such as local tabu search,genetic algorithms and shifting bottleneck procedures for job shop scheduling,but applicable to generic infeasible solutions for the JSSP to achieve feasibility. 展开更多
关键词 INFEASIBILITY job shop scheduling repairing algorithm
在线阅读 下载PDF
On/Off-Line Prediction Applied to Job Scheduling on Non-Dedicated NOWs 被引量:1
15
作者 Mauricio Hanzich Porfidio Hernandez +2 位作者 Francesc Gine Francesc Solsona Josep L.Lerida 《Journal of Computer Science & Technology》 SCIE EI CSCD 2011年第1期99-116,共18页
This paper proposes a prediction engine designed for non-dedicated clusters, which is able to estimate the turnaround time for parallel applications, even in the presence of serial workload of the workstation owner. T... This paper proposes a prediction engine designed for non-dedicated clusters, which is able to estimate the turnaround time for parallel applications, even in the presence of serial workload of the workstation owner. The prediction engine can be configured to work with three different estimation kernels: a Historical kernel, a Simulation kernel based on analytical models and an integration of both, named Hybrid kernel. These estimation proposals were integrated into a scheduling system, named CISNE, which can be executed in an on-line or off-line mode. The accuracy of the proposed estimation methods was evaluated in relation to different job scheduling policies in a real and a simulated cluster environment. In both environments, we observed that the Hybrid system gives the best results because it combines the ability of a simulation engine to capture the dynamism of a non-dedicated environment together with the accuracy of the historical methods to estimate the application runtime considering the state of the resources. 展开更多
关键词 prediction method non-dedicated cluster cluster computing job scheduling simulation
原文传递
Fuzzy Logic-Based Secure and Fault Tolerant Job Scheduling in Grid
16
作者 王乘 蒋从锋 刘小虎 《Tsinghua Science and Technology》 SCIE EI CAS 2007年第S1期45-50,共6页
The uncertainties of grid sites security are main hurdle to make the job scheduling secure, reliable and fault-tolerant. Most existing scheduling algorithms use fixed-number job replications to provide fault tolerant ... The uncertainties of grid sites security are main hurdle to make the job scheduling secure, reliable and fault-tolerant. Most existing scheduling algorithms use fixed-number job replications to provide fault tolerant ability and high scheduling success rate, which consume excessive resources or can not provide sufficient fault tolerant functions when grid security conditions change. In this paper a fuzzy-logic-based self-adaptive replication scheduling (FSARS) algorithm is proposed to handle the fuzziness or uncertainties of job replication number which is highly related to trust factors behind grid sites and user jobs. Remote sensing-based soil moisture extraction (RSBSME) workload experiments in real grid environment are performed to evaluate the proposed approach and the results show that high scheduling success rate of up to 95% and less grid resource utilization can be achieved through FSARS. Extensive experiments show that FSARS scales well when user jobs and grid sites increase. 展开更多
关键词 fault tolerance grid security fuzzy logic job scheduling self-adaptive replication
原文传递
QoS-aware simulation job scheduling algorithm in virtualized cloud environment
17
作者 Zhen Li Bin Chen +2 位作者 Xiaocheng Liu Dandan Ning Xiaogang Qiu 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2020年第5期208-225,共18页
Cloud computing is attracting an increasing number of simulation applications running in the virtualized cloud data center.These applications are submitted to the cloud in the form of simulation jobs.Meanwhile,the man... Cloud computing is attracting an increasing number of simulation applications running in the virtualized cloud data center.These applications are submitted to the cloud in the form of simulation jobs.Meanwhile,the management and scheduling of simulation jobs are playing an essential role to offer efficient and high productivity computational service.In this paper,we design a management and scheduling service framework for simulation jobs in two-tier virtualization-based private cloud data center,named simulation execution as a service(SimEaaS).It aims at releasing users from complex simulation running settings,while guaranteeing the QoS requirements adaptively.Furthermore,a novel job scheduling algorithm named adaptive deadline-aware job size adjustment(ADaSA)algorithm is designed to realize high job responsiveness under QoS requirement for SimEaaS.ADaSA tries to make full use of the idle fragmentation resources by tuning the number of requested processes of submitted jobs in the queue adaptively,while guaranteeing that jobs’deadline requirements are not violated.Extensive experiments with trace-driven simulation are conducted to evaluate the performance of our ADaSA.The results show that ADaSA outperforms both cloud-based job scheduling algorithm KCEASY and traditional EASY in terms of response time(up to 90%)and bounded slow down(up to 95%),while obtains approximately equivalent deadline-missed rate.ADaSA also outperforms two representative moldable scheduling algorithms in terms of deadline-missed rate(up to 60%). 展开更多
关键词 job scheduling simulation execution as a service virtualized cloud
原文传递
Cost-aware cloud workflow scheduling using DRL and simulated annealing
18
作者 Yan Gu Feng Cheng +3 位作者 Lijie Yang Junhui Xu Xiaomin Chen Long Cheng 《Digital Communications and Networks》 CSCD 2024年第6期1590-1599,共10页
Cloud workloads are highly dynamic and complex,making task scheduling in cloud computing a challenging problem.While several scheduling algorithms have been proposed in recent years,they are mainly designed to handle ... Cloud workloads are highly dynamic and complex,making task scheduling in cloud computing a challenging problem.While several scheduling algorithms have been proposed in recent years,they are mainly designed to handle batch tasks and not well-suited for real-time workloads.To address this issue,researchers have started exploring the use of Deep Reinforcement Learning(DRL).However,the existing models are limited in handling independent tasks and cannot process workflows,which are prevalent in cloud computing and consist of related subtasks.In this paper,we propose SA-DQN,a scheduling approach specifically designed for real-time cloud workflows.Our approach seamlessly integrates the Simulated Annealing(SA)algorithm and Deep Q-Network(DQN)algorithm.The SA algorithm is employed to determine an optimal execution order of subtasks in a cloud server,serving as a crucial feature of the task for the neural network to learn.We provide a detailed design of our approach and show that SA-DQN outperforms existing algorithms in terms of handling real-time cloud workflows through experimental results. 展开更多
关键词 Cloud computing Deep reinforcement learning Simulated annealing algorithm job scheduling WORKFLOW
在线阅读 下载PDF
Modified bottleneck-based heuristic for large-scale job-shop scheduling problems with a single bottleneck 被引量:21
19
作者 Zuo Yan Gu Hanyu Xi Yugeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期556-565,共10页
A modified bottleneck-based (MB) heuristic for large-scale job-shop scheduling problems with a welldefined bottleneck is suggested, which is simpler but more tailored than the shifting bottleneck (SB) procedure. I... A modified bottleneck-based (MB) heuristic for large-scale job-shop scheduling problems with a welldefined bottleneck is suggested, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, the bottleneck is first scheduled optimally while the non-bottleneck machines are subordinated around the solutions of the bottleneck schedule by some effective dispatching rules. Computational results indicate that the MB heuristic can achieve a better tradeoff between solution quality and computational time compared to SB procedure for medium-size problems. Furthermore, it can obtain a good solution in a short time for large-scale jobshop scheduling problems. 展开更多
关键词 job shop scheduling problem BOTTLENECK shifting bottleneck procedure.
在线阅读 下载PDF
Solving flexible job shop scheduling problem by a multi-swarm collaborative genetic algorithm 被引量:12
20
作者 WANG Cuiyu LI Yang LI Xinyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期261-271,共11页
The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborativ... The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborative optimization algorithm is proposed for the FJSP.Multi-population structure is used to independently evolve two sub-problems of the FJSP in the MSCGA.Good operators are adopted and designed to ensure this algorithm to achieve a good performance.Some famous FJSP benchmarks are chosen to evaluate the effectiveness of the MSCGA.The adaptability and superiority of the proposed method are demonstrated by comparing with other reported algorithms. 展开更多
关键词 flexible job shop scheduling problem(FJSP) collaborative genetic algorithm co-evolutionary algorithm
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部