期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于实时数据的煤矿三维安全生产信息平台
1
作者 郭超 李丽绒 《山西焦煤科技》 CAS 2022年第10期24-27,共4页
针对煤矿现有信息系统独立运行,系统之间“数据壁垒”“信息孤岛”现象严重的问题,提出一种基于实时数据的煤矿三维安全生产信息平台,利用轻量级数据交换格式Json,对煤矿现有信息系统中实时数据进行集成、汇聚,并根据实时生成的Json文... 针对煤矿现有信息系统独立运行,系统之间“数据壁垒”“信息孤岛”现象严重的问题,提出一种基于实时数据的煤矿三维安全生产信息平台,利用轻量级数据交换格式Json,对煤矿现有信息系统中实时数据进行集成、汇聚,并根据实时生成的Json文件数据,实现煤矿主要安全生产系统的三维可视化仿真。该平台已在山西焦煤集团所属某煤矿成功应用,实现了对煤矿主要安全生产过程的三维可视化监测。 展开更多
关键词 煤矿三维安全生产 实时数据 Sketch up软件 javascript object notation轻量级数据交换格式
在线阅读 下载PDF
JSON-ASR:A lightweight data storage and exchange format for automatic systematic reviews of TCM
2
作者 Ji Xu Hongyong Deng 《TMR Modern Herbal Medicine》 2021年第2期37-43,共7页
Objectives:The aim of this study was to investigate and develop a data storage and exchange format for the process of automatic systematic reviews(ASR)of traditional Chinese medicine(TCM).Methods:A lightweight and com... Objectives:The aim of this study was to investigate and develop a data storage and exchange format for the process of automatic systematic reviews(ASR)of traditional Chinese medicine(TCM).Methods:A lightweight and commonly used data format,namely,JavaScript Object Notation(JSON),was introduced in this study.We designed a fully described data structure to collect TCM clinical trial information based on the JSON syntax.Results:A smart and powerful data format,JSON-ASR,was developed.JSON-ASR uses a plain-text data format in the form of key/value pairs and consists of six sections and more than 80 preset pairs.JSON-ASR adopts extensible structured arrays to support the situations of multi-groups and multi-outcomes.Conclusion:JSON-ASR has the characteristics of light weight,flexibility,and good scalability,which is suitable for the complex data of clinical evidence. 展开更多
关键词 Data storage and exchange Automatic systematic reviews Traditional Chinese medicine javascript object notation
暂未订购
τJOWL:A Systematic Approach to Build and Evolve a Temporal OWL 2 Ontology Based on Temporal JSON Big Data
3
作者 Zouhaier Brahmia Fabio Grandi Rafik Bouaziz 《Big Data Mining and Analytics》 EI 2022年第4期271-281,共11页
Nowadays,ontologies,which are defined under the OWL 2 Web Ontology Language(OWL 2),are being used in several fields like artificial intelligence,knowledge engineering,and Semantic Web environments to access data,answe... Nowadays,ontologies,which are defined under the OWL 2 Web Ontology Language(OWL 2),are being used in several fields like artificial intelligence,knowledge engineering,and Semantic Web environments to access data,answer queries,or infer new knowledge.In particular,ontologies can be used to model the semantics of big data as an enabling factor for the deployment of intelligent analytics.Big data are being widely stored and exchanged in JavaScript Object Notation(JSON)format,in particular by Web applications.However,JSON data collections lack explicit semantics as they are in general schema-less,which does not allow to efficiently leverage the benefits of big data.Furthermore,several applications require bookkeeping of the entire history of big data changes,for which no support is provided by mainstream Big Data management systems,including Not only SQL(NoSQL)database systems.In this paper,we propose an approach,namedJOWL(temporal OWL 2 from temporal JSON),which allows users(i)to automatically build a temporal OWL 2 ontology of data,following the Closed World Assumption(CWA),from temporal JSON-based big data,and(ii)to manage its incremental maintenance accommodating the evolution of these data,in a temporal and multi-schema environment. 展开更多
关键词 big data javascript object notation(JSON) JSON schema temporal JSON ONTOLOGY temporal ontology JSchema OWL
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部