The Java-Sumatra upwelling is one of the most important upwelling systems in the Indian Ocean, with maximum upwelling intensity in July through August. To estimate the nitrate supplied by upwelling, we developed a thr...The Java-Sumatra upwelling is one of the most important upwelling systems in the Indian Ocean, with maximum upwelling intensity in July through August. To estimate the nitrate supplied by upwelling, we developed a three-dimensional hydrodynamic model to calculate the mean vertical speed and determine the depth of upwelling. We used in-situ vertical nitrate profiles to assess nitrate concentration in the upwelled waters, and calculated the nitrate supply as the product of nitrate concentration and vertical transport obtained from the numerical model. The calculated result represents potential new production generated in the upwelling region. We found that on the event time scale (monthly) of Java-Sumatra upwelling, water brought to the surface originated from locations 100-m deep, giving a nitrate supply of 93.77×10 3mol/s and potential new production of 1.02×10 14gC/a.展开更多
Horizontal and vertical distributions of δ^18 and δ^13 were investigated in shells of four planktonic foraminiferal species, Globigerinoides ruber, Globigerinoides sacculifer, Pulleniatina obliquiloculata and Neoglo...Horizontal and vertical distributions of δ^18 and δ^13 were investigated in shells of four planktonic foraminiferal species, Globigerinoides ruber, Globigerinoides sacculifer, Pulleniatina obliquiloculata and Neogloboquedrina dutertrei, from a total of 62 core-top sediment samples from the Indonesian throughflow region. Results were compared to modern hydrologic conditions in order to explore potential of proxies in reconstructing fluvial discharge and upper ocean water column characteristics in this region. Our results show that, in the Makassar Strait, both of depleted δ^18 and δ^13 of these four species were linked to freshwater input. In the Bali Sea,however, depleted δ^18 and δ^13 for these species may be due to different reasons. Depleted δ^18 was a result of freshwater input and as well influenced by along-shore currents while depleted δ^13 was more likely due to the Java-Sumatra upwelling. Comparison of shell δ^18 records and hydrographic data of World Ocean Atlas 2005 suggests that G. ruber and G. sacculifer calcify within the mixed-layer, respectively at 0–50 m and 20–75 m water depth, and P. obliquiloculata and N. dutertrei within the upper thermocline, both at 75–125 m water depth. N.dutertrei calcifies at slightly deeper water depth than P. obliquiloculata does. In general, δ^13 values of both G.ruber and G. sacculifer are larger than those of P. obliquiloculata and N. dutertrei at all sites, possibly related to depth habitats of these species and vertical distribution of nutrients in the Indonesian throughflow region.展开更多
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (Nos. KZCX2-YW-Q11-02, LYQY200807)the National Natural Science Foundation of China (No. 40876093)
文摘The Java-Sumatra upwelling is one of the most important upwelling systems in the Indian Ocean, with maximum upwelling intensity in July through August. To estimate the nitrate supplied by upwelling, we developed a three-dimensional hydrodynamic model to calculate the mean vertical speed and determine the depth of upwelling. We used in-situ vertical nitrate profiles to assess nitrate concentration in the upwelled waters, and calculated the nitrate supply as the product of nitrate concentration and vertical transport obtained from the numerical model. The calculated result represents potential new production generated in the upwelling region. We found that on the event time scale (monthly) of Java-Sumatra upwelling, water brought to the surface originated from locations 100-m deep, giving a nitrate supply of 93.77×10 3mol/s and potential new production of 1.02×10 14gC/a.
基金The National Natural Science Foundation of China under contract No.41176044Shaanxi Provincial Technology Foundation for Selected Overseas Chinese Scholar under contract Shaan Renshe[2015]No.1190
文摘Horizontal and vertical distributions of δ^18 and δ^13 were investigated in shells of four planktonic foraminiferal species, Globigerinoides ruber, Globigerinoides sacculifer, Pulleniatina obliquiloculata and Neogloboquedrina dutertrei, from a total of 62 core-top sediment samples from the Indonesian throughflow region. Results were compared to modern hydrologic conditions in order to explore potential of proxies in reconstructing fluvial discharge and upper ocean water column characteristics in this region. Our results show that, in the Makassar Strait, both of depleted δ^18 and δ^13 of these four species were linked to freshwater input. In the Bali Sea,however, depleted δ^18 and δ^13 for these species may be due to different reasons. Depleted δ^18 was a result of freshwater input and as well influenced by along-shore currents while depleted δ^13 was more likely due to the Java-Sumatra upwelling. Comparison of shell δ^18 records and hydrographic data of World Ocean Atlas 2005 suggests that G. ruber and G. sacculifer calcify within the mixed-layer, respectively at 0–50 m and 20–75 m water depth, and P. obliquiloculata and N. dutertrei within the upper thermocline, both at 75–125 m water depth. N.dutertrei calcifies at slightly deeper water depth than P. obliquiloculata does. In general, δ^13 values of both G.ruber and G. sacculifer are larger than those of P. obliquiloculata and N. dutertrei at all sites, possibly related to depth habitats of these species and vertical distribution of nutrients in the Indonesian throughflow region.